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Abstract—This article investigates several parallelizable alter-
natives to DTW for estimating the alignment between two long
sequences. Whereas most previous work has focused on reducing
the total computation and/or memory costs of DTW, our focus
is instead on reducing wall clock time by utilizing common
hardware like GPUs that are optimized for parallel processing.
We propose and study four different parallelizable alignment
algorithms: the first three algorithms compute approximations
of DTW by breaking the pairwise cost matrix into rectangular
regions and processing the regions in parallel, and the fourth
algorithm computes an exact DTW alignment by processing the
cost matrix along diagonals rather than rows or columns. We
characterize the performance of our proposed alignment algo-
rithms on an audio-audio alignment task, and we develop GPU-
based implementations for the two best-performing algorithms,
which we call weakly-ordered Segmental DTW (WSDTW) and
Parallelized Diagonal DTW (ParDTW). Our experiments indicate
that ParDTW is the most practical and useful of the four
algorithms: it computes an exact DTW alignment and reduces
runtime by 1.5 to 2 orders of magnitude on long sequences
compared to current alternatives. We present a comprehensive
evaluation and study of the alignment accuracy, runtime, and
practical limitations of the proposed alignment algorithms.

Index Terms—DTW, dynamic time warping, alignment, paral-
lelizable, approximate.

I. INTRODUCTION

THIS paper explores parallelizable alternatives to dynamic
time warping (DTW). DTW is a dynamic programming

algorithm for determining the optimal alignment between two
sequences of features. It was originally developed in the
context of speech recognition [1] and is now widely used in
many tasks involving time series data [2]. Its weaknesses are
its quadratic runtime and memory costs, which can become
prohibitively expensive for long sequences. In this paper, we
explore parallelizable alternatives to DTW that make use of
modern hardware such as graphics processing units (GPUs).

Recent work in the machine learning community has ex-
plored ways to incorporate DTW alignment into neural net-
work models with sequence inputs. Some works integrate
DTW into a neural network by estimating an alignment, and
then only backpropagating through the optimal alignment path
in the pairwise cost matrix [3][4]. This approach has also
been explored in the past with other feature transformations
(e.g. CCA [5]). Other works approach the problem by con-
sidering smooth, differentiable approximations of DTW, and
then backpropagating through the estimated soft alignments
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[6][7][8]. The use of soft alignments has been successfully
applied in several neural network models (e.g. [9][10]), but the
use cases have been limited to very short sequences (e.g. 8×8
pairwise cost matrix in [10]) due to the computational cost of
DTW. Given that most modern neural networks are trained
on parallelized hardware like GPUs and require very fast
per-batch processing times, this motivates our exploration of
parallelizable alternatives to DTW that can utilize modern
GPUs and be fast enough to be incorporated into model
training.

Many previous works have proposed ways to make DTW
more scalable. These works can be divided into two categories.
The first category propose ways to speed up an exact DTW
alignment. Many works focus on efficient computation of the
DTW 1-nearest neighbor for short scalar sequences through
the use of lower bounds [11][12][13][14], early abandoning
[15][16][17], and utilizing multiple cores [18][19][20] or spe-
cialized hardware [21][22][23]. Much of this work revolves
around the UCR Time Series Archive [2], which focuses on
classification tasks of short scalar sequences (ranging in length
from 15 to 2844). Lower bounds for multi-dimensional time
series do exist [24][25][26][27], but are more limited in scope.
For alignment of long sequences, a recent work [28] proposed
a two-stage method for computing DTW under certain con-
ditions in O(L2log(log(log(L)))/log(log(L)) time. Another
recent work [29] proposes a way to reduce memory costs to
O(L) by performing dynamic programming along diagonals
(rather than rows/columns) of the cost matrix, combined with
a divide-and-conquer approach.

The second category of previous work proposes approxi-
mations to DTW that require less computation or memory.
For alignment of short query sequences, many works have
explored approximate lower bounds [30][31][32] or approx-
imations of DTW distance [33][34][35]. For alignment of
long sequences, some methods include imposing bands in the
pairwise cost matrix to limit extreme time warping [36][1][37],
adopting a multi-resolution approach [38][39] in which an
alignment is estimated at a coarse granularity and then itera-
tively refined, and estimating alignments given a fixed amount
of memory [40] or in an online fashion [41][42].

This paper explores parallelizable alignment algorithms for
aligning long sequences. Whereas previous works focus on
reducing total computation and memory costs, our focus is on
reducing wall clock time (rather than total computation) by
utilizing common hardware like GPUs that are optimized for
parallel processing. We propose and investigate four paralleliz-
able alignment algorithms. The first three are variants of an
algorithm called Segmental DTW [43] that compute different
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approximations of DTW. Segmental DTW was originally
proposed to solve a completely different problem – estimating
the alignment between a long reference recording and an
ordered set of audio fragments separated by unknown gaps –
and we adapt its original formulation to approximate DTW in
a parallelizable way. The 3 variants we investigate differ in the
ordering constraints imposed on the estimated alignment path,
and are appropriately named non-ordered Segmental DTW
(NSDTW), weakly-ordered Segmental DTW (WSDTW), and
strictly-ordered Segmental DTW (SSDTW). In all 3 variants,
the global alignment problem is broken into smaller alignment
problems that can be solved in parallel. The fourth alignment
algorithm is called Parallelized Diagonal DTW (ParDTW)
and computes an exact DTW alignment in a parallelizable
way. It uses a recent insight [29] that performing dynamic
programming along diagonals of the cost matrix (rather than
along rows or columns) allows for parallel computations,
but it focuses on minimizing runtime rather than minimizing
memory usage (as in [29]).

This article has three main contributions.1 First, we propose
four parallelizable alignment algorithms for aligning long
sequences that could be used as alternatives to DTW: non-
ordered Segmental DTW, weakly-ordered Segmental DTW,
strictly-ordered Segmental DTW, and Parallelized Diagonal
DTW. Second, we characterize the performance of these
alignment algorithms on an audio-audio alignment task and
under various controlled conditions. Our empirical results
indicate that Parallelized Diagonal DTW is the most practical
and useful of the four algorithms: it computes an exact DTW
alignment and reduces runtime by 1.5 to 2 orders of magnitude
on long sequences compared to current alternatives. Third,
we release an open source implementation of Parallelized
Diagonal DTW that is optimized for use with GPUs. Code can
be found at https://github.com/HMC-MIR/ParallelizingDTW.

The rest of the paper is organized as follows. Section II de-
scribes the four proposed parallelizable alignment algorithms.
Section III provides further detail on how these algorithms
can be implemented efficiently on a GPU. Section IV explains
the experimental setup for an audio-audio alignment task, and
Section V presents our empirical results. Section VI conducts
several analyses to provide deeper intuition into algorithmic
behavior. Section VII concludes the work.

II. SYSTEM DESCRIPTION

This section describes four different alignment algorithms
that could be used as parallelizable alternatives to DTW.

1This article is a journal extension to an earlier conference paper [44]. It
extends the conference paper in several ways: (i) we propose two additional
parallelizable alignment algorithms (NSDTW in Section II-A, ParDTW in
Section II-D) and characterize the performance of all proposed algorithms
and additional baselines in both alignment accuracy (Figure 6) and runtime
(Section VI-B), (ii) we propose a highly parallelized implementation of
WSDTW (Section III-A) that parallelizes along two additional dimensions
beyond the conference paper, (iii) we release the source code for highly
optimized GPU-based implementations of WSDTW and ParDTW, whereas
the conference paper only had optimized CPU-based implementations, and
(iv) we conduct several new analyses including the effect of SNR (Section
VI-A), wall clock runtime of parallelized implementations (Section VI-C),
and memory requirements (Section VI-D).

Fig. 1. Sample alignment paths for DTW, NSDTW, WSDTW, and SSDTW.
NSDTW imposes no ordering constraints on the subsequence alignment paths
and may have large forward or backward jumps at fragment boundaries.
WSDTW imposes weak ordering constraints, allowing forward jumps or short
backward jumps at fragment boundaries. SSDTW imposes strict ordering
constraints, allowing forward jumps only at fragment boundaries.

The first three alignment algorithms are variants of Segmen-
tal DTW and are all approximations of DTW. The fourth
alignment algorithm is a parallelized version of DTW which
computes an exact DTW alignment. These four alignment
algorithms will be described in detail in the next four sub-
sections.

A. Non-ordered Segmental DTW

The first alignment algorithm is non-ordered Segmental
DTW (NSDTW). Aligning two sequences A and B with
NSDTW consists of two steps. The first step is to break
sequence A into N approximately equal-length fragments.
The second step is to perform subsequence DTW between
each fragment of sequence A and the entirety of sequence
B. Subsequence DTW is a variant of DTW that finds the
optimal alignment between a short query sequence and any
subsequence within a long reference sequence. It accomplishes
this by (1) computing a pairwise cost matrix between the
query sequence and reference sequence, (2) initializing the
cumulative cost matrix to allow the alignment path to begin
anywhere in the reference sequence without penalty, (3) filling
out the cumulative cost matrix and corresponding backtrace
matrix using dynamic programming, and (4) using the lowest
subsequence path score as the starting point for backtracing in
order to determine the optimal subsequence alignment path.
For a more detailed explanation of subsequence DTW, the
reader is referred to [45], section 4.4. In our experiments, the
dynamic programming stage allows for (query, reference) tran-
sitions {(1, 1), (1, 2), (2, 1)} with corresponding multiplicative
weights {1, 1, 2}. Note that the subsequence DTW compu-
tations for each fragment can be done in parallel. The final
predicted alignment from NSDTW is simply the concatenation
of the optimal subsequence paths for each fragment.

NSDTW has a major weakness: it imposes no ordering
constraints on the subsequence alignment paths. This can result
in sudden discontinuities at the fragment boundaries, as shown
in Figure 1. For example, if the first fragment in sequence
A has several strong matches in sequence B, NSDTW will
simply select the strongest match without any consideration
of global ordering among the fragment alignments. Whereas
regular DTW produces a monotonic alignment path, NSDTW
does not guarantee continuity or monotonicity and may have
large forward or backward jumps. This potential weakness
will be addressed by the weakly-ordered and strictly-ordered
variants described in the next two subsections.
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Fig. 2. Overview of the main steps in weakly-ordered and strictly-ordered
Segmental DTW.

B. Weakly-ordered Segmental DTW

The second alignment algorithm is weakly-ordered Segmen-
tal DTW (WSDTW). It partially addresses the weakness of
NSDTW by imposing some ordering constraints. Aligning two
sequences A and B with WSDTW consists of five steps, which
are described in the next five paragraphs. Figure 2 shows an
overview of the algorithm, where the sequences being aligned
are assumed to go from bottom to top and from left to right.

The first step is to break sequence A into N approximately
equal-length fragments. This step is identical to the first step
of NSDTW. Let LA and LB denote the lengths of sequences
A and B, respectively, and consider the pairwise cost matrix
Ci between the ith fragment of sequence A and the entirety
of sequence B. The matrices C1, C2, . . . , CN ∈ RLA/N×LB

are simply a partition of the global pairwise cost matrix C ∈
RLA×LB into N sub-matrices. Figure 2 shows an example of
this step with N = 4 fragments.

The second step is to compute a subsequence DTW cu-
mulative cost matrix on each fragment. For each pairwise
cost matrix Ci ∈ RLA/N×LB , i = 1, 2, . . . , N , we compute
a corresponding cumulative cost matrix Di ∈ RLA/N×LB

that indicates subsequence path scores, as well as the cor-
responding backtrace matrix Bi ∈ NLA/N×LB . As before,
we allow (query, reference) transitions {(1, 1), (1, 2), (2, 1)}
with corresponding multiplicative weights {1, 1, 2}, where the
fragment of sequence A serves as the query and sequence B
serves as the reference. Note that this second step can be done
in parallel across the N fragments. This step is identical to the
second step of NSDTW, except that instead of selecting locally
optimal subsequence alignment paths, we will perform some
additional computations (steps 3 and 4, described below) to
select a set of globally optimal subsequence alignment paths
under certain constraints.

The third step is to assemble a segment-level cost matrix
Cseg . This is done by stacking the subsequence path scores
from each Di, i = 1, 2, . . . , N into a matrix of size RN×LB .
The subsequence path scores are shown in Figure 2 as
highlighted rows at the top of each sub-matrix Di. Cseg[i, j]
therefore indicates the optimal subsequence path score of the
ith fragment ending at offset j in sequence B. Cseg will serve
as the segment-level pairwise cost matrix.

The fourth step is to find an optimal path through Cseg

that enforces ordering constraints. This can be accomplished
with dynamic programming with allowable (fragment, frame)
transitions {(0, 1), (1, LA

2N )} and corresponding multiplicative
weights {0, 1}. In Figure 2, the (0, 1) transition corresponds
to a horizontal transition directly to the right, which indicates
a skip with no cost. The (1, LA

2N ) transition corresponds to
a segment-level match, where LA

2N represents the smallest
possible matching duration with a fragment of length LA

N and
a maximum time warping factor of 2 (since the allowable
frame-level transitions are (1, 1), (1, 2) and (2, 1)). The dy-
namic programming equation is thus given by Dseg[i, j] =
min(Dseg[i, j−1], Dseg[i−1, j− LA

2N ]+Cseg[i, j]). Once the
segment-level cumulative cost matrix Dseg and corresponding
backtrace matrix Bseg have been computed, we can use the
backpointers in Bseg to determine the optimal path through
Cseg . This segment-level path indicates the ending locations
for a set of globally optimal subsequence alignment paths. In
Figure 2, these ending locations are indicated with colored
empty boxes. Note that these ending locations are guaranteed
to be strictly increasing, which ensures that the fragments are
globally ordered.

The fifth step is to backtrace through each frame-level
backtrace matrix Bi. The backtrace for each fragment starts at
the globally optimal ending location for the given fragment,
as determined in the previous step. This backtracing step can
be done in parallel across each fragment. In Figure 2, the
ending locations are shown as colored empty boxes, and the
backtraced alignment paths are indicated with colored lines.
The concatenation of subsequence alignment paths is the final
predicted alignment of the WSDTW algorithm.

Note that WSDTW only imposes weak ordering constraints.
Whereas regular DTW with {(1, 1), (1, 2), (2, 1)} transitions
guarantees a smooth, monotonic alignment path, WSDTW
allows for discontinuities at the fragment boundaries, including
the possibility of backward jumps. To see this, consider the
most extreme example: the ending locations of two consecu-
tive fragment alignment paths are separated by the minimum
distance LA

2N , but the backtraced frame-level alignment path
for the later fragment consists entirely of (1, 2) transitions and
thus has a duration (along sequence B) of 2LA

N . In this case,
there will be a backward jump of magnitude 2LA

N − LA

2N = 3LA

2N
at the boundary between the two fragments. While this exam-
ple would probably never occur in practice, we do find that it
is not uncommon to have small backward jumps at fragment
boundaries.

It is useful to point out that the frame-level operations (steps
1, 2, and 5) in WSDTW are parallelizable. In section III, we
will describe how WSDTW can be implemented efficiently on
a GPU.

C. Strictly-ordered Segmental DTW

The third alignment algorithm is strictly-ordered Segmental
DTW (SSDTW). It addresses the weakness of NSDTW by
imposing strict ordering constraints. Unlike WSDTW, SSDTW
guarantees that the global alignment path will not have back-
ward jumps. SSDTW consists of the same five steps as shown
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procedure SDTW(SeqA, SeqB, LA, LB , N , steps, wts, variant)
for i from 0 to N do

frag ← GETITHFRAGMENT(SeqA, N , i)
D[i], B[i] ← SUBSEQDTW(frag, SeqB, steps, wts)

end for

Cseg , Tseg ← GETSEGLEVELMATRICES(D, B, variant)
fragEnds ← GETFRAGENDLOCS(Cseg , Tseg , variant)

for i from 0 to N do
fragAlign ← BACKTRACEFROM(B[i], fragEnds[i])
fragAlign ← ADDOFFSET(fragAlign, i × LA/N )
path ← EXTEND(path, fragAlign)

end for
return path

end procedure

Fig. 3. Pseudo code for Segmental DTW. Both for loops can be parallelized.
The GETSEGLEVELMATRICES and GETFRAGENDLOCS functions behave
differently for NSDTW, WSDTW, and SSDTW to enforce different global
ordering constraints. NSDTW chooses the minimum element in the top row
of each Di. WSDTW and SSDTW use dynamic programming to find globally
optimal fragment ending locations. SSDTW uses Tseg to define the allowable
transitions through Cseg .

in Figure 2, but it has several differences from WSDTW which
are described below.

The first two steps are identical to WSDTW: sequence A is
broken into N fragments, and a subsequence DTW cumulative
cost matrix is calculated on each fragment. These two steps
can be done in parallel across each fragment.

The third step is to assemble the segment-level cost matrix
Cseg and a segment-level transition matrix Tseg . Cseg is
formed in the same way as in WSDTW. The difference in this
third step is that SSDTW requires constructing an additional
matrix Tseg ∈ NN×LB that keeps track of valid transitions
between elements in Cseg . Tseg[i, j] indicates the starting
position (along sequence B) of the optimal alignment path
for the ith fragment that ends at position j in sequence B.
For example, if k ≜ Tseg[i, j], then there is a valid transition
directly from position (i − 1, k) to position (i, j) in Cseg .
Computing all entries of Tseg therefore requires backtracing
from every possible ending location for every fragment.

The fourth step is to find the optimal path through Cseg

using valid transitions in Tseg . This can be accomplished with
dynamic programming with two types of allowable transitions.
The first type is a (0, 1) transition with multiplicative weight
0 that indicates a horizontal skip with no cost. The second
type is a jump transition with multiplicative weight 1 that
is determined by the information in Tseg . If we define k ≜
Tseg[i, j], then the dynamic programming equation is given by
Dseg[i, j] = min(Dseg[i, j − 1], Dseg[i − 1, k] + Cseg[i, j]).
Note that, whereas WSDTW allows a fixed (1, LA

2N ) jump
transition at each position, SSDTW allows a jump transition
that is specific to each position (i, j) in Cseg in order to ensure
that backward jumps cannot occur.

The fifth step is to backtrace through each frame-level
backtrace matrix Bi. This step is identical to WSDTW: the
backtrace for each fragment starts at the globally optimal
ending location for the given fragment, and backtracing is
used to determine the optimal subsequence alignment path.
The concatenation of each fragment’s subsequence alignment

path forms the final global predicted alignment. This step can
be done in parallel across each fragment.

Note that SSDTW guarantees a monotonic global alignment
path. It still allows forward jumps at fragment boundaries, but
the transition matrix guarantees that each fragment’s alignment
path does not begin before the previous fragment’s alignment
path has ended. This guarantee comes at the cost of significant
additional computation in calculating the entries of Tseg .

Figure 3 shows pseudo code for all three Segmental DTW
variants. Note that both for loops can be parallelized, and that
the manner in which the fragment ending locations are selected
varies based on which variant of Segmental DTW is being
used.

D. Parallelized Diagonal DTW

The fourth alignment algorithm is Parallelized Diagonal
DTW (ParDTW). Unlike the previous three alignment algo-
rithms, ParDTW is an exact implementation of DTW, but it
performs the dynamic programming in a way that allows for
parallelization on a GPU. As a secondary objective, it is also
designed to minimize memory usage, since GPUs have limited
RAM.

ParDTW is identical to standard DTW but has three signifi-
cant differences. First, the dynamic programming is performed
along diagonals of the cost matrix, rather than along rows
and columns as in standard DTW. As can be seen in the
bottom illustration in Figure 5, cumulative cost elements
on each diagonal can be computed in parallel. Second, the
pairwise cost matrix is never allocated in memory. Instead,
each pairwise cost is computed on the fly when its value
is needed. By performing the pairwise cost computations on
the fly rather than as a preprocessing step, we can eliminate
the need to allocate the entire global pairwise cost matrix in
memory. Third, the cumulative cost matrix is never allocated
in memory. Instead, four fixed-length buffers are used to keep
track of the cumulative cost values in the four most recent
diagonals.2 As shown in Figure 5 (bottom), calculating the
cumulative cost values on a diagonal only requires knowing
the values in the three previous diagonals. By cyclically using
four buffers, we can eliminate the need to allocate the entire
global cumulative cost matrix in memory. Apart from the three
differences above, ParDTW is identical to standard DTW. In
particular, it is important to note that the backtrace matrix is
still allocated in memory and used to perform backtracing.

The concept of using diagonals to parallelize DTW is
not new. Tralie and Dempsey [29] introduced this idea in
an algorithm that computes an exact DTW alignment but
reduces the memory requirement from quadratic to linear.
To accomplish this, they use diagonal buffers with a divide-
and-conquer approach that finds the midpoint of the DTW
alignment path, and then applies the algorithm recursively to
each of the two resulting (smaller) alignment problems until
the entire alignment path has been determined. ParDTW uses

2The number of buffers required depends on the set of allowable tran-
sitions. In our description of ParDTW, we assume a set of transitions
{(1, 1), (1, 2), (2, 1)}.
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Fig. 4. An illustration of how to parallelize subsequence DTW between a
short fragment and a long reference sequence. To compute the subsequence
path scores colored in blue, only the blue chunk (“Chunk i”) of the reference
sequence is needed. The computation can thus be parallelized across chunks.

the insight that diagonal buffers can be parallelized, but it pri-
oritizes minimizing total runtime (through a parallelized GPU
implementation) rather than minimizing total memory usage.
As will be seen in Section VI, it achieves a significant speedup
in runtime but retains a quadratic memory requirement.

III. GPU IMPLEMENTATIONS

In this section we describe optimized GPU-based implemen-
tations of WSDTW and ParDTW. As will be seen in Section V,
WSDTW and ParDTW are the alignment algorithms with the
best alignment accuracy. We therefore focused on developing
optimized GPU implementations of these two algorithms, the
details of which are described in the next two subsections.

A. GPU Implementation of WSDTW

The algorithm described in this subsection exactly imple-
ments the WSDTW algorithm described in Section II-B, but it
does so in a way that utilizes massive parallelization. Our goal
is to reduce total runtime by utilizing as much parallelization
as possible on a GPU.

Recall from Figure 2 that WSDTW consists of five stages:
(1) breaking sequence A into N fragments, (2) computing
a subsequence DTW cumulative cost matrix between each
fragment and the entirety of sequence B, (3) assembling a
segment-level cost matrix Cseg , (4) finding an optimal path
through Cseg , and (5) backtracing through each frame-level
backtrace matrix Bi. The segment-level operations (steps 3
and 4) are not parallelizable, and are simply run on a single
core on the GPU. The frame-level backtracing (step 5) is par-
allelized across the N fragments in a straightforward manner.
Unlike steps 3 through 5, however, the frame-level dynamic
programming (steps 1 and 2) can be massively parallelized.
The remainder of this section describes how this parallelization
can be accomplished.

The frame-level dynamic programming is parallelized along
three dimensions, which are described in the following three
paragraphs.

The first dimension is to parallelize across the N fragments
in sequence A, as has already been discussed in Section II-B.

Fig. 5. The dimensions across which WSDTW parallelizes computation. (Top)
The global pairwise cost matrix is divided into overlapping tiles, and each
tile is processed in parallel. (Bottom) Within each tile, subsequence DTW is
performed by processing diagonal elements in parallel.

For each fragment, we must compute a subsequence DTW
between the fragment and the entirety of sequence B.

The second dimension is to parallelize across M overlap-
ping chunks in sequence B. Note that when the allowable
transitions are {(1, 1), (1, 2), (2, 1)}, it is possible to compute
a subsequence path score by looking at only a small context
within sequence B. Figure 4 shows an illustration of this for
a toy example, where we are calculating subsequence path
scores (top row of the cumulative cost matrix, indicated with
red dotted line) between a short fragment and the entirety
of sequence B. If our goal is to compute the individual
subsequence path scores colored in blue, we only need to
consider the context in B indicated by the blue chunk (“Chunk
i”). Note that the potential path with most extreme time
warping is indicated with blue highlighted boxes. Similarly,
if our goal is to compute the individual subsequence path
scores colored in green, we only need to consider the context
in B indicated by the green chunk (“Chunk i+1”). Therefore,
we can parallelize each global subsequence DTW problem
(i.e. between a fragment and the entirety of sequence B) into
a set of M local subsequence DTW problems (i.e. between a
fragment and a chunk of sequence B). Because the chunks are
overlapping, this adds some additional redundant computation
but allows us to potentially reduce runtime through paralleliza-
tion. Note that this process yields an exact computation – it
is not an approximation but yields the exact same results as
computing a single global subsequence DTW.

The third dimension is to parallelize each local subsequence
DTW problem across diagonals. As mentioned in Section II-D,
this idea was recently proposed by Tralie and Dempsey [29],
who note that by performing the dynamic programming across
diagonals of a cost matrix (rather than rows or columns),
it is possible to compute the elements on each diagonal
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in parallel. Furthermore, we also adopt their technique of
reducing memory storage by only keeping a few diagonal
buffers in memory during the dynamic programming, rather
than storing the entire cumulative cost matrix.3 Therefore, a
(frame-level) pairwise cost matrix and a cumulative cost matrix
are never allocated in memory during the frame-level dynamic
programming. Instead, pairwise costs are computed on the fly
and only four buffers are used to keep track of the cumulative
cost elements on the four most recent diagonals. However,
the entire global frame-level backtrace matrix must be stored
in memory, since that information is needed to perform the
backtracing in step 5.

Figure 5 illustrates the three dimensions along which we
parallelize the frame-level dynamic programming. One can
think of the process as parallelizing across NM overlapping
tiles in the global pairwise cost matrix, and then computing
the subsequence DTW on each tile by processing diagonal
elements in parallel. Note that the amount of parallelization
is NM times the maximum diagonal length in each tile LA

N ,
which results in a parallelization of LAM . The combination
of these three dimensions allows for massive parallelization
on long sequences.

B. GPU Implementation of ParDTW

The GPU implementation of ParDTW is far simpler than
WSDTW: it simply parallelizes across the diagonals of the
cost matrix during the dynamic programming stage. Its imple-
mentation is exactly the same as in WSDTW (paragraph 6 in
the previous subsection), except that it computes a standard
DTW alignment rather than a subsequence DTW alignment.

IV. EXPERIMENTAL SETUP

In this section, we describe the data and evaluation method-
ology for our experiments.

We ran all experiments on the Chopin Mazurka dataset
[46]. This dataset contains multiple audio performances of 5
different Chopin mazurkas, along with beat-level timestamp
annotations for each performance. Because DTW, Segmental
DTW, and ParDTW do not have any trainable parameters, only
one mazurka (Opus 17, No 4) was reserved as a training set
for development and debugging, and the other 4 were used
as a testing set. Pairwise cost matrices were computed using
cosine distance on standard chroma features with 23ms hop
size. In our experiments, we align each performance to all
other performances of the same mazurka, resulting in a total
of 1953 training pairs and 7630 testing pairs. Table I shows
an overview of the dataset.

We evaluate systems along two axes: alignment accuracy
and runtime. When evaluating the predicted alignment between
two recordings A and B, we compare the ground truth beat
timestamps in B with the predicted timestamps in B at the
corresponding ground truth beat timestamps in A. Predicted
beat timestamps that are within a given error tolerance of
the ground truth beat timestamps are considered correct,

3In their paper, Tralie and Dempsey [29] assume {(1, 0), (0, 1), (1, 1)}
transitions and only need three diagonal buffers. In our paper, we assume
{(1, 1), (1, 2), (2, 1)} transitions and need four diagonal buffers.

TABLE I
OVERVIEW OF THE CHOPIN MAZURKA DATASET USED IN ALIGNMENT

EXPERIMENTS. DURATIONS ARE INDICATED IN SECONDS.

Piece Files mean std min max
Opus 17, No 4 64 259.7 32.5 194.4 409.6
Opus 24, No 2 64 137.5 13.9 109.6 180.0
Opus 30, No 2 34 85.0 9.2 68.0 99.0
Opus 63, No 3 88 129.0 13.4 96.2 162.9
Opus 68, No 3 51 101.1 19.4 71.8 164.8

while predictions outside the allowable error tolerance are
considered incorrect. For a given fixed error tolerance, we can
thus calculate an error rate that indicates the percentage of
predictions that are incorrect. By considering a range of error
tolerances, we can characterize the tradeoff between error rate
and error tolerance. To evaluate runtime, we construct random
feature sequences of length L, run the alignment algorithm
on the resulting L× L cost matrix, and average the runtimes
across multiple trials. By considering different values of L,
we can characterize the runtime in a controlled manner. All
experiments are run on a 2.40 GHz Intel Xeon server with an
RTX 3090 GPU.

V. RESULTS

We compare the performance of five different align-
ment algorithms: DTW, FastDTW, and the three Segmental
DTW variants. The basic DTW baseline uses transitions
{(1, 1), (1, 2), (2, 1)} with multiplicative weights {2, 3, 3},
which weights all possible alignment paths equally (since all
valid alignment paths have the same Manhattan distance).
FastDTW [38] is an approximation of DTW that adopts a
multi-resolution approach: it first estimates a global alignment
at a low resolution, and then refines the estimated alignment
path with successively higher resolutions. The three Segmental
DTW variants – NSDTW, WSDTW, and SSDTW – are each
evaluated with several different values of N ranging between 2
and 32. Note that ParDTW produces the exact same alignment
as DTW, so its results are not reported separately.

Figure 6 shows the alignment accuracy of all five alignment
algorithms. Each group of bars corresponds to a different
error tolerance, where we consider error tolerances ranging
from 10ms to 500ms. From left to right, the bars indicate the
performance of DTW (blue), FastDTW (orange), and WSDTW
with N = 2 (green), N = 4 (red), N = 8 (purple), N = 16
(brown), and N = 32 (pink). The black dots indicate the error
rates for SSDTW for the same values of N , and the red crosses
indicate the error rates for NSDTW for the same values of N .

There are 3 things to notice about Figure 6. First, WSDTW
closely approximates the alignment accuracy of DTW, with
a slight degradation in performance as N increases. For
example, with a 50ms error tolerance DTW has an error rate
of 32.9%, WSDTW with N = 2 has an error rate of 32.8%
and with N = 32 has an error rate of 34.4%. Second, all three
Segmental DTW variants closely approximate DTW for small
values of N , but the performance of NSDTW and SSDTW
degrades rapidly as N increases. The fact that WSDTW
performs best among the three variants is somewhat surprising
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Fig. 6. Alignment error rates for DTW, FastDTW, and the 3 variants of
Segmental DTW. From left to right, the bars indicate the performance of
DTW, FastDTW, and WSDTW for N = 2, 4, 8, 16, 32. The black dots show
results for SSDTW with the same values of N . The red crosses show results
for NSDTW with the same values of N .

and unexpected, especially since SSDTW has the strongest
guarantees on ordering constraints. Third, FastDTW has better
alignment accuracy than WSDTW with higher values of N at
lower error tolerances (and even slightly outperforms regular
DTW at very low error tolerances), but has noticeably worse
performance than DTW and WSDTW for error tolerances
greater than 100ms.

VI. ANALYSES

In this section we perform four different analyses to better
understand the behavior of the proposed alignment algorithms.
These analyses are covered in the next four subsections.

A. Effect of SNR

The first analysis is to characterize the effect of signal-
to-noise ratio (SNR) on alignment accuracy. While Figure 6
clearly demonstrates that the number of fragments (and thus
the length of the fragments) affects alignment accuracy, it is
important to recognize that the quality of the approximation
also depends on the level of noise or distortion between the
two sequences. For this analysis, we focus on WSDTW since
it is the best approximation of DTW among the Segmental
DTW variants.

We studied the effect of SNR through a set of controlled
experiments. We first generated several noisy versions of the
Mazurka dataset, where noisy versions are constructed by
adding additive white Gaussian noise (AWGN) to each audio
recording at a fixed SNR. We consider SNRs of 20 dB, 15
dB, 10 dB, 5 dB, 0 dB, -5 dB, and -10 dB, resulting in 7
noisy versions of the Mazurka dataset. We then evaluate the
accuracy of predicted alignments between clean-noisy pairs of
recordings, where each pair consists of one clean recording
(i.e. no noise added) and one noisy recording (i.e. with
AWGN). Again, we align each (clean) performance to other
(noisy) performances of the same mazurka, resulting in the
same number of training and testing pairs as before.

Fig. 7. Alignment error rates for aligning clean-noisy pairs, where each pair
consists of a clean audio recording and a noisy audio recording with white
Gaussian noise added at a fixed SNR. The bars indicate WSDTW error rates
with a 100ms error tolerance, and the black horizontal lines indicate WSDTW
error rates with 20ms (above) and 500ms (below) error tolerances. The gray
horizontal lines indicate SSDTW error rates with 100ms error tolerance.

Figure 7 shows the results of these controlled experiments.
The seven groups of bars correspond to the seven different
SNRs ranging from 20 dB to -10 dB. Within each group,
the individual bars indicate the error rates (with 100ms error
tolerance) for DTW, FastDTW, and WSDTW with N =
2, 4, 8, 16, 32. In addition, black horizontal lines are overlaid
on top of each bar to show the error rate for that system
with 20ms error tolerance (above) and 500ms error tolerance
(below). The gray horizontal lines indicate the performance of
SSDTW with 100ms error tolerance.

There are three things to notice about Figure 7. First, we
see that WSDTW (colored bars) outperforms SSDTW (gray
horizontal lines) across a wide range of SNRs and values
of N . Second, across all SNRs the quality of the WSDTW
(and SSDTW) approximation becomes worse as N increases.
This matches the results for our experiments with clean audio.
Third, the WSDTW approximation is worse for lower SNRs.
For example, at 20 dB SNR the 100ms tolerance error rates for
DTW (19.6%) and WSDTW (21.6%, N = 32) are relatively
close, whereas at -10 dB the error rates for DTW (41.7%)
and WSDTW (49.8%, N = 32) are quite different. Thus,
there are at least two major factors that affect the quality of
the WSDTW approximation: the length of the subsequence
fragments and the amount of distortion between the two
sequences. Note that both of these factors contribute to how
distinctive the optimal subsequence DTW alignment paths are
from suboptimal alignment paths – longer sequences tend to
be more distinctive, and less noise and distortion results in
more distinctive alignments.

B. Runtime (single-threaded)

The second analysis is to characterize the total amount
of computation required for each of the proposed alignment
algorithms. We can accomplish this by measuring runtimes
with single-threaded CPU implementations. This allows us to
make a fair comparison of total computation by avoiding con-
founding factors like the clock speed of the GPU and CPU, the
data transfer rate between CPU and GPU, the number of cores
on the GPU, and other hardware-dependent characteristics. In



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE II
COMPARING ALIGNMENT RUNTIMES ON SEQUENCES OF VARYING SIZES.
RESULTS ARE WITH SINGLE-THREADED CPU IMPLEMENTATIONS AND

THUS INDICATE THE TOTAL AMOUNT OF COMPUTATION REQUIRED. TIMES
ARE REPORTED IN SECONDS AND ARE AVERAGED OVER 10 TRIALS.

Seq Length
System 1k 2k 5k 10k 20k 50k
DTW 0.016 0.086 0.57 2.36 9.55 60.6
ParDTW 0.029 0.11 0.85 4.06 16.9 146.8
FastDTW 0.69 1.38 3.45 6.90 13.8 34.6
NSDTW-2 0.016 0.11 0.58 2.29 9.39 57.9
NSDTW-4 0.016 0.083 0.59 2.30 9.42 60.4
NSDTW-8 0.014 0.081 0.49 2.24 9.33 57.6
NSDTW-16 0.015 0.074 0.50 2.32 9.56 58.7
NSDTW-32 0.016 0.075 0.49 1.95 9.58 59.5
WSDTW-2 0.016 0.085 0.57 2.38 9.42 57.0
WSDTW-4 0.014 0.077 0.57 2.28 9.49 57.7
WSDTW-8 0.015 0.082 0.50 2.38 9.61 56.5
WSDTW-16 0.015 0.074 0.47 2.15 9.58 58.9
WSDTW-32 0.017 0.076 0.49 1.90 9.63 58.0
SSDTW-2 0.023 0.11 0.82 3.59 20.3 136.3
SSDTW-4 0.020 0.11 0.82 3.65 15.4 147.7
SSDTW-8 0.021 0.11 0.71 3.44 14.7 103.4
SSDTW-16 0.022 0.11 0.75 3.32 13.7 93.0
SSDTW-32 0.023 0.12 0.71 2.88 13.8 91.6

the next subsection (Section VI-C), we will complement this
analysis by comparing wall clock runtimes with parallelized
GPU implementations, which are unavoidably affected by the
specific details of the hardware setup but are indicative of
runtimes that might be expected in practice.

Table II compares runtimes of single-threaded CPU imple-
mentations of DTW, FastDTW, ParDTW, and all Segmental
DTW variants. Runtimes are measured on pairs of random
feature sequences of length 1k, 2k, 5k, 10k, 20k, and 50k,
so that the pairwise cost matrix is always an L × L square
matrix. The three Segmental DTW variants are evaluated with
N = 2, 4, 8, 16, 32. Each runtime indicated in the table is the
average of 10 trials and is expressed in seconds.

There are a few things to notice about Table II. First, we
see that DTW, NSDTW, and WSDTW have comparable run-
times across all sequence lengths. NSDTW adds no additional
computation to standard DTW. WSDTW does add additional
computation due to the segment-level operations, but this
cost is negligible compared to the amount of computation
for frame-level operations. In fact, in many instances we see
that NSDTW and WSDTW actually have lower runtimes than
DTW. Upon further investigation, we found that the primary
reason for this is that NSDTW and WSDTW are able to fit
matrices into memory cache with higher values of N , which
results in faster data access. Second, we see that SSDTW has
a significantly higher runtime than the other systems. This is
because of the additional computation required to construct the
segment-level transition matrix Tseg . Recall that constructing
Tseg requires backtracing from every possible ending location
in every fragment, which results in a significant increase in
total amount of computation. Third, ParDTW has runtimes
that are about 1.5 to 2 times slower than DTW. In theory,
ParDTW requires the same amount of computation as DTW.
In practice, however, the single-threaded implementation of
ParDTW is slower than DTW because it computes the pairwise

Fig. 8. Breakdown of total runtime by component. The y-axis indicates what
percentage of total runtime is due to different stages of computation. The four
panels compare DTW and the three Segmental DTW variants with N = 32.
Within each panel, the different bars correspond to different sequence lengths.
For the Segmental DTW variants, all stages are parallelizable except for the
segment-level dynamic programming and backtracing.

cost matrix elements individually rather than in a single batch
operation (e.g. a matrix multiplication).

Figure 8 shows the percentage breakdown of runtime by
component for DTW and all Segmental DTW variants. The
three variants of Segmental DTW are evaluated with N = 32.
The y-axis indicates what percentage of the total runtime is due
to five different stages of computation: computing the pairwise
cost matrix (“Cost”), frame-level dynamic programming (“Frm
DP”), frame-level backtracing (“Frm Back”), segment-level
dynamic programming (“Seg DP”), and segment-level back-
tracing (“Seg Back”). Note that the frame-level operations in
Segmental DTW are parallelizable, which corresponds to the
purple, blue, and green categories (bottom three components
in each bar). All runtimes are measured on single-threaded
CPU implementations.

There are two things to notice about Figure 8. First, the
segment-level operations make up a tiny fraction of the total
runtime, especially for longer feature sequences. Since the
segment-level operations are the only ones that are not paral-
lelizable, this indicates that almost all operations in Segmental
DTW can be parallelized. For example, more than 99.66% of
the operations in WSDTW-32 are parallelizable for sequences
of length 10,000 or longer. Second, SSDTW expends a much
larger fraction of its runtime on frame-level backtracing. This
is because constructing Tseg requires backtracing from every
possible ending location for every fragment. The large amount
of additional computation that this adds is shown by the green
bars in the rightmost panel.

C. Runtime (parallelized)

The third analysis is to consider runtimes with our paral-
lelized GPU implementations of WSDTW and ParDTW. As
mentioned above, it is important to remember that these results
are affected by the specific details of the hardware setup, such
as the number of cores on the GPU, the clock speed on the
GPU, and the data transfer speed between the CPU and GPU.
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TABLE III
EFFECT OF N AND M ON RUNTIME FOR THE GPU-BASED

IMPLEMENTATION OF WSDTW. EACH NUMBER INDICATES THE AVERAGE
RUNTIME IN SECONDS TO ALIGN TWO SEQUENCES OF LENGTH 100K.

M
N 1 3 10 30 100 300 1000
1 8.16 9.30 14.3 31.7 95.1 276 915
3 6.79 7.25 11.5 26.0 78.0 226 752
10 6.33 5.86 7.31 13.1 33.3 92.7 301
30 6.26 5.27 5.51 7.25 14.3 34.9 110
100 6.41 5.13 4.75 5.06 7.02 12.9 36.2
300 5.49 4.62 4.37 4.27 4.70 6.34 14.7
1000 5.91 5.11 4.50 4.22 3.93 4.97 9.31

Nonetheless, these results are useful indicators of the actual
wall clock runtime that one might expect in practice.

Table III shows the effect of N and M on runtime for the
GPU implementation of WSDTW. Recall that N is the number
of fragments to break sequence A into, and M is the number
of overlapping chunks to break sequence B into. The numbers
in the table indicate the total runtime required to align two
sequences of length 100k with a particular setting of N and M .
Each reported time is the average of 10 trials. Experiments are
run with an RTX 3090 with 24 GB of RAM. Note that different
values of N will affect alignment accuracy (as shown in Figure
6), while different values of M will always yield identical
results (but may affect runtime). Standard deviations for the
numbers reported in Table III remained relatively stable, with
all entries having standard deviations less than 0.08s and one
entry with 0.11s standard deviation.

There are three things to notice about Table III. First, the
runtime is generally faster with a higher value of N . This can
be seen by noting that the runtimes in each column generally
decrease from top to bottom. Keep in mind, however, that
higher values of N will result in a poorer approximation of
DTW, as shown in Figure 6. Therefore, the value of N should
be selected based on the desired level of approximation, rather
than as high as possible. Second, the runtime only decreases
for higher values of M up to some optimal setting. This can
be seen by noting that the runtimes in most rows decrease
from left to right, reach a minimum, and then increase. Higher
values of M will result in greater parallelization, but also
increase the total amount of computation (since each new
chunk must do some redundant computation) and overhead.
For this reason, increasing M beyond the optimal setting
will result in longer runtimes. Since different values of M
yield identical predicted alignments, the value of M should
be selected to minimize runtime. Third, the optimal setting for
N and M (N∗ = 1000, M∗ = 100) only achieves a modest
speedup (3.93s) compared to the nominal setting N = 1,
M = 1 (8.16s). This indicates that most of the benefit from the
GPU acceleration comes from parallelizing across diagonals,
rather than splitting the pairwise cost matrix into chunks. This
provides a very strong argument for using ParDTW instead of
WSDTW, since it guarantees the exact same results as DTW
and achieves most of the runtime speedup of WSDTW.

Figure 9 compares the runtime of six different implemen-
tations or approximations of DTW. The first implementation

Fig. 9. Comparison of runtimes for six different implementations or ap-
proximations of DTW: a CPU-based single-threaded implementation of DTW
(blue), the previously proposed GPU-based parallelized implementation of
exact DTW by Tralie and Dempsey [29] (orange), a CPU-based single-
threaded implementation of WSDTW (green), a GPU-based parallelized im-
plementation of WSDTW for N = 32 (red) as well as for the N that achieves
lowest runtime (purple), and a GPU-based parallelized implementation of
ParDTW (brown). The black bars indicate one standard deviation above and
below the mean. Note that some standard deviation bars are so small that they
are not visible, and that the log axis results in asymmetric lengths above and
below the mean.

is the standard DTW algorithm implemented in numba by
the Librosa python library (“DTW Librosa - CPU”). This
implementation runs on the CPU in a single thread. The
second implementation is the algorithm proposed by Tralie
and Dempsey [29], which computes exact DTW using a
parallelized approach on a GPU (“DTW Tralie - GPU”). The
third implementation is an optimized version of WSDTW
implemented in cython (“WSDTW - CPU”). This implemen-
tation is single-threaded and runs on the CPU. The fourth and
fifth implementations are the GPU versions of WSDTW with
N = 32 (“WSDTW - GPU (N=32)”) and with the value of
N that achieves the lowest runtime (“WSDTW - GPU (Best
N)”). We include N = 32 as a reasonable setting on the
Mazurka dataset, and we include the optimal value of N as a
practical lower bound on runtime when alignment accuracy is
disregarded. Both implementations use the optimal setting of
M that achieves the lowest runtime. The sixth implementation
is the GPU version of ParDTW (“ParDTW - GPU”). Numbers
indicate the average runtime across 10 trials to align two
sequences of varying length. Experiments are run using an
RTX 3090 GPU with 24 GB of RAM.

There are three things to notice about Figure 9. First, all
of the runtimes increase quadratically with sequence length
(which appears as a linear trajectory on a log-log axis). This
is to be expected since all of the implementations have O(L2)
runtime. Second, the implementation by Tralie and Dempsey
only has modest improvements in runtime compared to an op-
timized, single-threaded CPU implementation of DTW. Thus,
while it addresses the quadratic memory constraints of DTW
for long sequences, it does not provide much benefit in terms
of runtime. Third, ParDTW and the GPU version of WSDTW
with N = 32 have similar runtimes, achieving 1.5 to 2
orders of magnitude speedup for long sequences compared
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to Librosa. For example, when aligning sequences of length
100k, the average runtime for Librosa was 572.1 sec and the
average runtime for ParDTW and the GPU implementation of
WSDTW with N = 32 was 6.4 sec and 7.0 sec, respectively.

We also investigated the percentage breakdown of wall
clock runtime by component. Across a wide range of sequence
lengths (1k to 50k), the percentage breakdown by compo-
nent was relatively constant for both ParDTW and WSDTW.
For ParDTW, the vast majority of wall clock runtime came
from the massively parallelized dynamic programming stage
(99.85%) and a tiny percentage came from the non-parallelized
backtracing stage (0.15%). For WSDTW, about 93.9% of
the runtime came from the massively parallelized frame-
level dynamic programming, 5.9% came from the modestly
parallelized frame-level backtracing, and < 0.2% came from
the non-parallelized segment-level operations.

Based on these experimental runtime results, ParDTW is the
recommended parallelization strategy. Compared to WSDTW,
ParDTW has several advantages: (a) it is an exact computation
of DTW, whereas WSDTW is an approximation, (b) it has
no hyperparameters to tune beyond those of regular DTW,
whereas WSDTW has two additional hyperparameters that
may affect both alignment accuracy and runtime, and (c) for
long sequences, it achieves as much speedup as WSDTW.

D. Memory

The fourth analysis is to characterize the memory require-
ments of ParDTW. We focus on the GPU implementation of
ParDTW, since it is the recommended parallelization strategy.

We can determine the amount of memory required to
align two sequences as follows. For this discussion, we will
assume that the two sequences are of length L with feature
dimensionality D. The memory usage on the GPU comes from
the following components:

• Inputs. Copying the two input sequences to GPU RAM
requires 2 · L ·D · sizeof(double) bytes.

• Dynamic Programming. Recall from Section III that the
global pairwise cost matrix is never allocated in memory.
Instead, the pairwise costs are computed on the fly during
dynamic programming, and the cumulative cost values
are stored in four buffers. The length of these buffers is
the maximum length of a diagonal in the pairwise cost
matrix, which for an L×L matrix is simply L. Therefore,
the total memory required for the dynamic programming
is approximately 4 · L · sizeof(double) bytes.

• Backtrace Matrix. The entire backtrace matrix is stored in
memory. This requires L2 · sizeof(uint2) bytes,4 since
we only need to store the type of transition at each
position.

• Outputs. The length of the predicted alignment path is un-
known in advance but will be no more than L. Therefore,
the predicted alignment (i.e. sequence of coordinates) will
occupy at most 2 · L · sizeof(uint32) bytes.

4This is the effective amount of memory required to store the backtrace
matrix. The actual implementation represents the backtrace matrix as an array
of uint32 elements and packs 16 consecutive elements into each uint32.

Consider memory usage when L = 250k and D = 12
(e.g. chroma features). The inputs take 45 MB (0.3% of total
memory), the dynamic programming takes 7.5 MB (0.05%),
the backtrace matrix takes 14.6 GB (99.6%), and the out-
puts take 2 MB (0.01%). As this example demonstrates, the
backtrace matrix is the dominant factor for memory usage for
long sequences. Therefore, for a GPU with T GB of RAM,
the maximum sequence length can be estimated by solving
the equation L2

max · sizeof(uint2) = T · 230, which yields
Lmax = 216 ·

√
T . For a GPU with T = 24 GB of RAM, this

maximum sequence length is approximately Lmax = 320k.
We have empirically validated that this back-of-the-envelope
estimate closely matches the actual maximum sequence length
in our GPU implementation. It is also useful to note that the
amount of parallelization ranges between 1 and L throughout
the dynamic programming stage, which results in an average
parallelization factor of L

2 . This means that the implementation
strongly utilizes the GPU’s parallelizable architecture when
processing long sequences.

Based on the above memory analysis, we recommend the
following metastrategy for selecting an appropriate paralleliza-
tion strategy for DTW. For alignment of short sequences,
standard single-threaded CPU implementations (e.g. Librosa)
are sufficient. For longer sequences, one can use a GPU
implementation of ParDTW to speed up the runtime by 1.5 to
2 orders of magnitude, as long as the computation fits on GPU
RAM. For a GPU with T GB of RAM, this allows for aligning
sequences up to length Lmax = 216·

√
T . For sequences longer

than Lmax, one can use the Tralie and Dempsey algorithm,
which effectively solves the memory problem but is 1.5 to 2
orders of magnitude slower than ParDTW.

VII. CONCLUSION

This article explores several parallelizable alternatives to
DTW for estimating the alignment between long sequences.
We characterize the performance of these algorithms on an
audio-audio alignment task, and we develop GPU-based im-
plementations for the two algorithms with highest alignment
accuracy, which we call WSDTW and ParDTW. Our empirical
results indicate that ParDTW is the most practical algorithm
for use with GPUs: it computes an exact DTW alignment,
reduces runtime by 1.5 to 2 orders of magnitude for long
sequences compared to current alternatives, and can handle
sequence lengths of 250k-320k with typical GPU RAM limits.
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