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Piano Sheet Music Identification Using Dynamic N-gram 
Fingerprinting
Daniel Yang and T. J. Tsai

This article introduces a method for large-scale retrieval of piano sheet music images. We study this 
problem in two different scenarios: camera-based sheet music identification and MIDI-sheet image retrieval. 
Our proposed method combines bootleg score features with a novel hashing scheme called dynamic N-gram 
fingerprinting. This hashing scheme ensures that every fingerprint is discriminative enough to warrant a 
table lookup, which improves both retrieval accuracy and runtime. On experiments using all piano sheet 
music images in the IMSLP database, the proposed method achieves >0.8 mean reciprocal rank with sub-
second runtimes. As a practical application, we use our system to find matches between the Lakh MIDI 
dataset and IMSLP, which augments the IMSLP sheet music data with symbolic music information for a 
subset of pieces. We release our code and Lakh-IMSLP matches to facilitate future study.
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1 Introduction
This article investigates large-scale retrieval of piano 
sheet music images through two applications. The first 
application is camera-based sheet music identification, 
where a user can take a cell phone picture of a physical 
page of piano sheet music and identify the matching sheet 
music in a large database. Using a structured database like 
the International Music Score Library Project (IMSLP), this 
sheet-sheet retrieval task could allow a user to conveniently 
access related resources such as alternate editions of the 
sheet music or audio recordings of the piece. The second 
application is MIDI-sheet image retrieval, where a MIDI 
query is used to find a match in a database of sheet images 
(or vice versa). In this work, we will use our approach to 
identify matches between the Lakh MIDI Dataset (LMD) 
(Raffel, 2016) and IMSLP. This is an extremely large-scale, 
cross-modal retrieval task. In both applications, our work 
lays a foundation for searching large databases of sheet 
music in novel ways.

To understand how our work fits into the broader 
landscape, we provide an overview of previous work on 
retrieval of sheet music images. Most previous work on 
sheet music retrieval comes from the audio-sheet image 
alignment and retrieval literature. There are three general 
approaches to this problem. The first approach is to 
use optical music recognition (OMR) (Calvo-Zaragoza et 
al., 2020) to convert the sheet music into MIDI, extract 
chroma features from the MIDI, and then compare 

them to chroma features extracted from the audio. This 
method has been applied to various forms of audio-sheet 
synchronization (Kurth et al., 2007; Damm et al., 2008; 
Fremerey et al., 2010; Thomas et al., 2016) and retrieval 
(Fremerey et al., 2008, 2009). The second approach is to 
compute a mid-level feature directly from the sheet music 
images, such as the location of noteheads (Izmirli and 
Sharma, 2012). This feature can then be related to audio 
chroma features using musical domain knowledge. The 
third approach is to use a neural network model to learn 
a common embedding space for audio and sheet music 
that captures semantic similarity. This approach has been 
applied to both audio-sheet alignment (Dorfer et al., 2017, 
2016) and various forms of audio-sheet retrieval (Dorfer 
et al., 2018a, c, 2017). Recent work has also investigated 
the alignment task as a reinforcement learning problem 
(Dorfer et al., 2018b; Henkel et al., 2019).

Sheet-MIDI and sheet-sheet alignment & retrieval have 
also been studied in various forms. Several previous works 
study the problem of using a sequence of musical symbols 
as a query to find matches in a set of corresponding sheet 
music images. This typically involves preprocessing the 
sheet music with OMR or musical object recognition, 
and then performing an N-gram lookup (Thompson et 
al., 2011; Achankunju, 2018) or treating the problem as 
a string matching (Malik et al., 2013) or keyword spotting 
(Calvo-Zaragoza et al., 2018) problem. One recent work 
studies both sheet-MIDI and sheet-sheet retrieval, where 
OMR is used to convert sheet music into MIDI and then 
similarity is computed using dynamic time warping over 
the pitch sequences (Hajič et al., 2018). A few other recent 
works approach the image-MIDI alignment and retrieval 
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task by computing mid-level features that encode the 
location of noteheads relative to staff lines in sheet music. 
This ‘bootleg score’ representation has been applied to 
MIDI-sheet image synchronization (Tanprasert et al., 
2019), large-scale MIDI-sheet retrieval (Tsai, 2020), and 
MIDI passage retrieval given a cell phone picture of sheet 
music (Yang et al., 2019; Tsai et al., 2020).

Our approach combines the bootleg score feature 
representation (Yang et al., 2019) with a novel hashing 
scheme called dynamic N-gram fingerprinting. This 
hashing method improves upon recent work (Tsai, 2020) 
that uses 1-grams as fingerprints. The dynamic N-gram 
method considers N-grams of different lengths, and it 
selects the length of each N-gram dynamically at runtime 
to ensure that every fingerprint is discriminative enough 
to warrant a table lookup.

This paper has four main contributions.1 First, we 
propose a way to perform large-scale sheet music 
retrieval by combining an existing bootleg score feature 
representation with a novel hashing scheme called 
dynamic N-gram fingerprinting. Second, we show that 
our approach significantly improves upon previously 
proposed approaches on two different tasks: camera-based 
sheet music identification and MIDI-sheet image retrieval. 
In our experiments, we use all solo piano sheet music 
images in the IMSLP database, which is several orders of 
magnitude larger than previous studies. Third, we use the 
proposed system to find matches between the Lakh MIDI 
dataset and IMSLP, which results in a multimodal dataset 
containing MIDI files and matching IMSLP sheet music 
images. Fourth, as a byproduct of our work, we release 
a precomputed dataset of bootleg score features for all 
piano scores in IMSLP. Due to the extremely large size of 
the IMSLP dataset, this precomputed set of features can 
facilitate other studies on large-scale sheet music retrieval.

2 System Description
Our proposed approach for piano sheet music retrieval is 
shown in Figure 1. We will describe the system in three 
parts. In Section 2.1, we will explain the bootleg score 
feature representation, which corresponds to the two 
boxes labeled “compute bootleg score.” In Section 2.2, we 
explain the offline process of constructing the database, 
which corresponds to the three blocks in the upper half 
of Figure 1. In Section 2.3, we explain the online process 
of doing a search, which corresponds to the four blocks 
in the lower half of Figure 1. We will explain all parts 
of Figure 1 for completeness, but we point out that our 

novel contribution is in constructing multiple N-gram 
databases and using dynamic N-grams at runtime.

2.1 Bootleg Score Computation
There are three kinds of bootleg score features: sheet 
music bootleg scores (for sheet-sheet retrieval), MIDI 
bootleg scores (for MIDI-MIDI retrieval), and sheet-MIDI 
bootleg scores (for sheet-MIDI retrieval).

The bootleg score is a symbolic representation that 
describes the positions of noteheads in sheet music 
relative to staff lines (Yang et al., 2019; Tsai et al., 2020). The 
bootleg score itself is a sequence of 62-dimensional binary 
vectors, which encode the staff line positions of noteheads 
occurring at the same time. The first 28 elements of 
the 62-dimensional vector represent noteheads that 
appear in the left hand staff, corresponding to notes 
ranging between A0 and G4. The remaining 34 elements 
represent noteheads that appear in the right hand staff, 
corresponding to notes ranging between E3 and G8. Note 
that these two ranges have overlap (E3 to G4), since notes 
in the middle register can occur in the left or right hand 
staves. These left and right hand vectors are concatenated 
to form a 62xN binary matrix, where N indicates the total 
number of simultaneous notehead events (e.g. a chord 
containing multiple notes would constitute a single 
event). Note that this representation does not encode key 
signature, time signature, accidentals, duration, octave 
markings, or clef changes. Even though it throws away a 
lot of information in the sheet music, a sufficiently long 
sequence of bootleg score events is generally distinctive 
enough to identify a piece. Figure 2 shows an example 
section of sheet music and its corresponding bootleg 
score. This representation was originally proposed for 
aligning sheet music and MIDI files (Yang et al., 2019; 
Tsai et al., 2020), and has been adapted and applied to 
other tasks (Tsai, 2020; Yang and Tsai, 2020; Shan and Tsai, 
2020).

The sheet music bootleg score is effective for sheet-
sheet retrieval. Its computation consists of 3 steps. The 
first step is image preprocessing. The image is converted 
to grayscale, a blurred version of the image is subtracted 
to mitigate the effect of variable lighting conditions, 
and the image is resized to ensure that the separation 
between adjacent staff lines is within an acceptable range. 
The second step is object detection. Here, the goal is to 
detect three different types of musical symbols: filled 
noteheads, staff lines, and bar lines. Because these objects 
are all simple geometrical shapes (circles and straight 

Figure 1: Proposed architecture for large-scale piano 
sheet music retrieval.

Figure 2: An excerpt of sheet music and its corresponding 
bootleg score.
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lines), they can be detected efficiently and robustly using 
classical computer vision techniques like morphological 
transforms and blob detection. The third step is to 
integrate the detected object locations into a bootleg 
score. The bar lines are used to group staff lines into left 
and right hand staves, and the location of filled noteheads 
relative to the staff lines determine their location in the 
bootleg score. For a more detailed explanation, the reader 
is referred to Tsai et al. (2020).

The MIDI bootleg score is effective for MIDI-MIDI 
retrieval. Its computation consists of three steps. The first 
step is to extract a list of note onsets and their onset times. 
The second step is to group note onsets into simultaneous 
note events, which consist of one or more note onsets 
that occur within the same discretized time interval. 
The third step is to project the simultaneous note events 
onto a bootleg score using the deterministic rules and 
conventions of Western musical notation (e.g. B4 would 
appear on the middle staff line in the right hand). This 
projection ignores note durations and rests, and it only 
describes the sequence of note events. When there is 
ambiguity about a notehead location due to enharmonic 
representations and/or left-right hand attribution, 
multiple noteheads are placed in the bootleg score at all 
plausible locations.

The sheet-MIDI bootleg score is a variant that enables 
cross-modal sheet-MIDI retrieval. There are two differences 
between the sheet music bootleg score and the MIDI 
bootleg score that prevent their use in a cross-modal 
hashing framework. The first difference is with handling 
left-right hand attribution. While a notehead in the middle 
register will only appear in either the left or right hand 
staff in the sheet music bootleg score, it appears in both 
the left and right hand staves in the MIDI bootleg score. 
This difference can be resolved by duplicating noteheads 
in the middle register so they appear in both the left and 
right hand staves of the sheet music bootleg score (even 
though they only occur in one staff in the actual sheet 
music). The second difference is with handling enharmonic 
representations. While a notehead will only appear in 
exactly one staff line position in the sheet music bootleg 
score, it may appear in two (or more) positions in the MIDI 
bootleg score if the note is a black key on the piano. For 
example, the MIDI note number 61 could appear in the 
sheet music as a C-sharp or a D-flat, and these correspond 
to two different staff line positions. This difference can be 
resolved at a system level by generating two completely 
separate versions of the MIDI bootleg score: one in which 
all black notes are interpreted as sharps, and one in which 
all black notes are interpreted as flats. Both versions can 
be used to query the database, and the one with a higher 
match score is selected. By modifying the original form 
of the MIDI and sheet music bootleg scores in these two 
ways, the resulting representation can be used for large-
scale, cross-modal retrieval (Tsai, 2020).

The bootleg score representation has two key benefits 
that make it an ideal choice for our applications. First, it 
is very fast to compute. Using only a CPU, it is possible to 
compute a bootleg score on a high-resolution scan of sheet 
music in under 1 second. This is much more efficient than 

most OMR systems, since OMR is typically construed as an 
offline task. Second, the bootleg score feature extraction 
has no trainable weights and is therefore much less prone 
to overfitting. By simply tuning a few hyperparameters, the 
bootleg score has been successfully used in very different 
domains including scanned sheet music, synthetic sheet 
music, and cell phone pictures of sheet music (Yang et al., 
2019; Tsai et al., 2020; Yang and Tsai, 2020; Shan and Tsai, 
2020).

2.2 Database Construction
There are three steps in constructing the database: data 
preprocessing, computing bootleg score features, and 
creating N-gram reverse indices. These three steps are 
shown in the upper half of Figure 1 and are explained in 
the following three paragraphs.

The first step is data preprocessing. To construct a sheet 
music database, the raw sheet music PDF is converted into 
a sequence of PNG images at 300 DPI. Because there is an 
extremely wide range of page sizes and resolutions across 
IMSLP, we also resize the PNG images to a fixed width of 
2550 pixels. Note that this fixed resizing is separate from 
the page-specific resizing step during the bootleg score 
feature computation (see Section 2.1). To construct a MIDI 
database, no preprocessing is necessary.

The second step is to compute bootleg score features 
for each sheet music or MIDI file. The appropriate bootleg 
score variant from Section 2.1 should be selected based 
on the type of retrieval. Since each sheet music file has 
multiple pages, the bootleg scores from each page are 
concatenated into a single global bootleg score. In practice, 
each 62-dimensional (binary) column in the bootleg score 
is encoded as a single 64-bit integer, so that the bootleg 
score is simply a list of integers.

The third step is to create N-gram reverse indices. 
Consider a length L bootleg score represented by the 
sequence of integers x1, x2,…, xL. For each offset i in 1 ≤ 
i ≤ L, we construct an N-gram fingerprint (xi,xi+1,…,xi+N–1) 
for a fixed value of N. We store two pieces of information 
about each N-gram fingerprint in the reverse index: the 
file and the offset i where the N-gram fingerprint occurs. 
So, for a given N-gram fingerprint value, the reverse index 
will contain a list of instances in the database where the 
N-gram fingerprint occurs. We construct five separate 
N-gram reverse indices for N = 1, 2, 3, 4, 5. These reverse 
indices will enable efficient retrieval during the runtime 
search.

2.3 Search
The search at runtime consists of four steps, as shown in 
the bottom half of Figure 1.

The first step is to compute a bootleg score representation 
for the query. The same bootleg score variant should 
be used in the database construction phase and the 
runtime search. The output of this step is a bootleg score 
represented by a sequence of integers x1, x2,…, xL.

The second step is to construct a sequence of dynamic 
N-gram fingerprints from x1, x2,…, xL. For each offset i in 1 
≤ i ≤ L, we construct a dynamic N-gram fingerprint (xi,xi+1,…
,xi+N(i)–1), where N(i) specifies the length of the N-gram 
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and may vary for different offsets i. So, for example, if 
N(1) = 1, N(2) = 3, and N(3) = 2, the first three dynamic 
N-grams would be (x1), (x2, x3, x4), (x3, x4). N(i) is computed 
by determining the smallest integer n that satisfies 
count ((xi, xi+1,…, xi+n–1)) < γ, where count ((xi,xi+1,…,xi+n–1)) 
indicates the total number of occurrences of the specific 
n-gram (xi, xi+1,…,xi+n–1) in the n-gram database and where 
γ is a hyperparameter specifying the maximum number 
of database matches we are willing to process for each 
reverse index lookup. In practice, we also impose a 
maximum cap nmax on the N-gram size due to memory 
constraints (i.e. storing all N-gram reverse indices in RAM). 
In our experiments, we use nmax = 4 and γ = 1000, which 
was tuned to ensure a sub-second average runtime for 
searching all piano scores in IMSLP.

Figure 3 shows an example of constructing a single 
dynamic N-gram at offset i. If we were to use the 1-gram 
at offset i, (xi), we would need to process a large number of 
database matches, resulting in slow runtime. This might 
occur if the 1-gram is not very distinctive (e.g. the bootleg 
score column only contains a single notehead). On the 
other hand, if we used the 5-gram (xi, xi+1, xi+2, xi+3, xi+4), 
the fingerprint would be overly distinctive and prone to 
error since a single “bit” error anywhere in the 5-gram 
would cause the table lookup to fail. Instead, we select 
N = 3 to ensure a balance between runtime and accuracy. 
Thus, the dynamic N-gram tries to find a balance between 
runtime and accuracy at each offset i by ensuring that 
every N-gram is discriminative enough to warrant a table 
lookup.

The third step is to assign each database item a match 
score using the histogram of offsets method. This method 
was originally proposed by Wang (2003) as an efficient way 
to search a database given a sequence of query fingerprints. 
For every database item, a histogram is constructed based 
on the relative offset between the query and the database 
item for matching N-gram fingerprints. For example, if 
the query N-gram fingerprint (xi, xi+1,…xi+N(i)–1) matches an 
N-gram fingerprint (yj, yj+1,…,yj+N(i)–1) in database item k, a 
relative offset value of j-i will be added to the histogram 
for database item k. For true matches in the database, a 
sequence of matching fingerprints will result in a spike 
in the histogram at the true relative offset (i.e. where the 
query begins matching the database item’s bootleg score). 

Therefore, we can use the maximum histogram bin count 
as the match score for each database item.

The fourth step is post-processing the results. In our 
applications, the database items correspond to sheet 
music PDFs. Since a piece of music may have multiple PDF 
versions in IMSLP, we calculate the piece match score as 
the maximum score among its constituent PDFs. Finally, 
we sort the pieces by their match scores. The final output 
of the system is a ranked list of IMSLP pieces.

3 Case Study: Camera-Based Sheet Music 
Identification
The first of our two tasks is to identify piano sheet music 
based on a cell phone picture of a physical page of sheet 
music. In this section, we study the performance of the 
proposed system on this task.

3.1 Experimental Setup
The experimental setup will be described in three parts: 
the cell phone images, the database, and the evaluation 
metric.

The cell phone query images come from the Sheet MIDI 
Retrieval dataset (Tsai et al., 2020). It consists of 2000 
cell phone images of 200 piano pieces coming from 25 
different composers. For each piece, exactly one sheet 
music PDF from IMSLP was printed onto physical paper. 
These physical pages were placed in various locations, and 
10 cell phone pictures were taken of different sections 
throughout each piece. The cell phone pictures were 
taken on four different cell phone models, at varying 
levels of zoom (capturing between 1 and 5 lines of music), 
and in various lighting conditions (e.g. with and without 
flash). In our experiments, we use a train/test split of 
400/1600, which is the original split used by Tsai et al. 
(2020).

The database consists of all piano sheet music scores in 
IMSLP. First, we scraped the IMSLP website to download 
all sheet music PDFs and accompanying metadata. This 
data is about 1.2 TB in size. For each piece, the metadata 
contains an instrument tag specifying the instrumentation 
of the piece. Next, we determined a set of instrument 
tags that correspond to solo piano pieces. We did this by 
searching for any instrument tags that contain the words 
“piano”, “clavier”, “harpsichord”, or “keyboard”, and then 
manually filtering the list to a set of 150 valid tags that 
correspond to solo piano pieces. Finally, we assemble a list 
of all non-manuscript PDFs that have a valid instrument 
tag. The resulting database contains 29,310 PDFs and 
374,758 individual pages.

We evaluate performance along two axes: retrieval 
accuracy and runtime. Because there is only one correct 
matching piece in the database, we use mean reciprocal 
rank (MRR) as our metric for retrieval accuracy. MRR 
ranges between 0 and 1, where 1 indicates perfect 
performance. To characterize runtime, we report 
the mean and standard deviation of runtimes on all 
test queries. The measured runtimes include all data 
preprocessing steps, such as converting from JPG to PNG 
and image resizing. All experiments are run on a 2.1 GHz 
Intel Xeon CPU.

Figure 3: An example of constructing a dynamic N-gram. 
The length of the N-gram is chosen to balance runtime 
and retrieval accuracy.
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3.2 Results
We compare our proposed system to nine baseline systems. 
The first 4 baselines are image retrieval systems developed 
in the computer vision community: MAC (Radenovic 
et al., 2016), SPoC (Babenko and Lempitsky, 2015), GeM 
(Radenovic et al., 2018), and RMAC (Tolias et al., 2016). All 
systems use a pretrained CNN as a backbone, but employ 
different approaches to reduce the activations to a fixed-
length feature representation. Because these four retrieval 
systems were trained on natural images and not sheet 
music, we expect them to perform poorly. Nonetheless, 
we include them in our set of baselines to establish 
that existing out-of-the-box image retrieval systems are 
inadequate solutions for our task. The last 5 baseline 
systems are fixed N-gram approaches for N = 1,2,3,4,5. 
These systems use fingerprints of a fixed size and only 
utilize one N-gram database. The fixed 1-gram system was 
recently proposed by Tsai (2020) and corresponds to the 
previous state-of-the-art on this task.

Table 1 summarizes our experimental results for 
the sheet music identification task. We report retrieval 
accuracies for three different variants of the problem. 
The first variant (and default problem statement) is piece 
retrieval, where we measure how well the system can 
identify the correct piece. In this variant, we pool PDF 
match scores by piece and evaluate the list of ranked 
pieces. The second variant is version retrieval, where we 
measure how well the system can identify the PDF that 
is shown in the image. In this variant, we treat each 
PDF as a separate item, and only the exact same PDF is 
considered correct. The third variant is page retrieval, 
where we measure how well the system can identify the 
exact page that is shown in the cell phone image. In this 
variant, we remove alternate PDFs of the same piece from 

the database, treat each page as a separate database item, 
and pool page scores within each PDF.

There are 5 things to notice about Table 1. First, the 
image retrieval baselines perform terribly but are better 
than random guessing (0.001 MRR, standard deviation 
0.004). This simply confirms that out-of-the-box image 
retrieval systems are not viable solutions. Second, 
the fixed N-gram baselines show a tradeoff between 
accuracy and runtime for different values of N. As N 
increases, the accuracy generally gets worse and the 
runtime improves. Third, the dynamic N-gram system 
has the best retrieval accuracy (0.853 MRR) and best 
runtime (0.98 seconds). This suggests that our design 
has successfully avoided a costly tradeoff between 
accuracy and runtime, and instead captures the best 
of both worlds. Fourth, the page retrieval results trail 
the piece retrieval results by around 0.07 MRR. This 
moderate drop in accuracy can be explained by repeated 
sections of music. Recapitulations or repeated motifs in 
the music may lead to correct piece identification but 
incorrect page identification. Fifth, the version retrieval 
results trail the piece retrieval results by 0.1-0.3 MRR. 
The fact that this is a big drop is a good thing: it means 
that the system confuses different PDFs of the same 
piece, meaning that it is largely invariant to differences 
between printed editions.

3.3 Analysis
We conduct four different analyses to provide deeper 
insight into our system’s performance on the sheet music 
identification task.

The first analysis is to characterize the hashing behavior 
of the proposed system. Figure 4 shows the frequency of 
unique N-gram fingerprints (sorted from most frequent to 
least frequent) in the fixed N-gram and dynamic N-gram 
databases. Note that both axes are on a log scale.

Table 1: Comparing system performance on the camera-
based piano sheet music identification task. The first 
three columns show the mean reciprocal rank on three 
retrieval tasks at varying levels of specificity. The last two 
columns show the system runtimes. The 1-gram system 
was proposed by Tsai (2020) and corresponds to the pre-
vious state-of-the-art.

Retrieval (MRR) Runtime (s)

System Piece Version Page Avg Std

MAC .037 .023 .026 1.17 .12

SPoC .003 .002 .002 1.14 .09

GeM .025 .017 .017 1.18 .11

R-MAC .036 .023 .024 0.96 .11

1-gram .709 .560 .620 21.5 12.5

2-gram .845 .525 .775 2.76 .36

3-gram .808 .652 .723 1.99 .21

4-gram .755 .617 .665 1.23 .13

5-gram .608 .493 .599 1.07 .08

dynamic .853 .692 .785 0.98 .12

Figure 4: Frequency of N-gram fingerprints in the data-
base, where fingerprints have been sorted from most 
frequent (left) to least frequent (right). Note that both 
axes are on a log scale.
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There are three things we can notice about Figure 4. 
First, there are a small number of very frequently occurring 
fingerprints. The 1-gram system is the most extreme 
example of this: there are seven fingerprints that occur 
more than a million times. Unsurprisingly, the extremely 
common 1-gram fingerprints tend to be bootleg score 
columns that contain only a single notehead. Because 
these fingerprints occur so commonly in music, the 
system needs to process a very large number of matches 
in the database, resulting in a slow runtime. Second, there 
are a very large number of rarely occurring fingerprints. 
For all systems, the vast majority of fingerprint values 
occur less than 10 times in the whole database. These 
fingerprints are overly specific and error-prone, leading 
to lower retrieval accuracy. They also require a lot of 
RAM when hosting the database in memory. Third, the 
dynamic N-gram system has the most desirable frequency 
distribution of all systems. It has the benefits of a long 
N-gram — avoiding fingerprints that occur too frequently 
— but it mitigates the problem of having overly distinctive 
fingerprints by augmenting the database with 1-grams, 
2-grams, and 3-grams that occur less than γ = 1000 times.

The second analysis is to characterize the effect of database 
size. We systematically varied the database size by randomly 
sampling a desired number of items from the full database. 
Figure 5 shows the performance of the fixed N-gram and 
dynamic N-gram systems for different database sizes. Each 
histogram bar represents the average performance of 10 
different database samplings on the test set.

There are two things to notice about Figure 5. First, 
the dynamic N-gram system scales well. There is an 
approximately linear decrease in MRR as the database size 
increases exponentially over several orders of magnitude. 
For reference, when the database size increases from 
10,000 to 30,000, the MRR decreases by about 0.02. 
Second, the dynamic N-gram system has the highest 
retrieval accuracy for large databases and is comparable 
to the best-performing system for small databases. For 
database sizes smaller than 1000, the fixed 2-gram system 
has slightly higher retrieval accuracy. Based on these 
results, the dynamic N-gram system is not worth the effort 
for small-scale retrieval tasks, but its benefits become clear 
for large-scale retrieval.

The third analysis is to characterize how well the system 
copes with variations between different printed editions 
of the same piece. To answer this question, we ran a 
controlled experiment in which we removed the exact 
same sheet music version from the database, so that only 
alternate versions of the sheet music exist in the database. 
Because some queries only had one sheet music version in 
IMSLP, this controlled experiment was run on a reduced 
subset of 930 test queries.

Table 2 shows the results of this controlled experiment. 
When the exact matching sheet music version is removed 
from the database, we see a slight drop in performance 
of about 0.02-0.06 MRR. These results suggest that the 
system is relatively robust to variations between different 
printed editions.

The fourth analysis is to characterize how the value of γ 
affects system performance. When varying the value of γ 
from 1k to 5k to 10k to 20k, the MRR slightly decreased 
from .864 to .865 to .860 to .853, and the average runtime 
decreased from 1.67s to 1.53s to 1.21s to 0.98s. Therefore, 
changing the value of γ allows us to trade off a slight 
decrease in retrieval accuracy for a significant speedup in 
runtime.

4 Case Study: Large-scale MIDI-Sheet 
Retrieval
The second of our two tasks is large-scale MIDI-sheet 
image retrieval. In this section, we describe two sets of 
controlled experiments (Sections 4.1 and 4.2) as well as 
an application of our approach to link LMD and IMSLP 
(Section 4.3).

4.1 Comparison to Previous Approaches
The goal of the first set of controlled experiments is to 
compare our proposed method to previously proposed 
approaches on the MIDI-sheet image retrieval task. We 
used the MIDI-sheet image retrieval benchmark proposed 

Figure 5: Effect of database size on system performance 
for the sheet music identification task. The largest data-
base size corresponds to the full IMSLP piano database.

Table 2: Comparing performance on the sheet music 
identification task under two conditions: when the 
exact same printed edition exists in the database (left 
column) and when only an alternate edition of the same 
piece exists (right column).

Piece Retrieval (MRR)

System Same Version Alternate Version

MAC .037 .043

SPoC .003 .004

GeM .025 .029

R-MAC .036 .039

1-gram .709 .659

2-gram .845 .784

3-gram .808 .767

4-gram .755 .722

5-gram .688 .668

dynamic .853 .812
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by Tsai et al. (2020), where a cell phone picture of a few 
lines of sheet music is used to retrieve a specific temporal 
passage in a MIDI file. We adapted this benchmark to 
study large-scale retrieval by padding the database with 
additional MIDI files from LMD.

Table 3 shows the results of these experiments. The 
table is divided into four sections according to the size of 
the database: 1, 200, 2000, and 10000. The top section 
shows the results on the original benchmark, where the 
MIDI file is assumed to be known (i.e. the database size 
is 1). These results are copied directly from Tsai et al 
(2020), and the reader is referred to the original paper for 

information about the baseline systems. The remaining 
three sections compare the best-performing system on 
the original benchmark (BS-DTW) to the fixed N-gram and 
dynamic N-gram systems for increasing database sizes. We 
evaluate both file-level retrieval (MRR) and passage-level 
retrieval (precision, recall, F-measure).

There are three things to notice about Table 3. First, 
only one of the systems evaluated on the original 
benchmark (i.e. database size 1) has acceptable retrieval 
accuracy and runtime: the BS-DTW system proposed by 
Tsai et al. (2020). This system computes bootleg score 
features on the sheet music and then uses subsequence 
DTW to find the best matching subsequence in the MIDI 
bootleg score. Second, the N-gram fingerprinting methods 
(i.e. the fixed N-gram and dynamic N-gram) are a scalable 
solution, whereas the BS-DTW approach is not. We can 
see that the runtime for BS-DTW increases approximately 
linearly with the database size, resulting in exorbitantly 
long run times. In contrast, the N-gram fingerprinting 
methods have worse retrieval accuracy but scale very well 
with database size. Third, the dynamic N-gram method is 
the best approach for large-scale retrieval. We can see that 
it has a lower runtime and higher retrieval accuracy than 
the fixed N-gram approaches across all database sizes.

4.2 Handling Jumps & Repeats
The goal of the second set of controlled experiments is to 
determine an effective strategy for handling discontinuities 
due to jumps or repeats. Though the pieces in the Sheet 
MIDI Retrieval dataset do not contain any discontinuities, 
it is necessary to answer this question in anticipation of 
applying our system to link LMD and IMSLP, where repeats 
and jumps may occur in the data. Note that our proposed 
system relies on finding a sequence of matching N-grams, 
so a single discontinuity could potentially shorten the 
sequence of matching N-grams in half.

One way to handle repeats and jumps with our 
proposed system is to break the MIDI file into fragments, 
perform the database search on each of the fragments 
separately, and average the database match scores from all 
fragments. This approach ensures that a discontinuity will 
only affect a single fragment, rather than the entire query. 
We experiment with two different shingling strategies: 
(a) deterministic shingling, in which windows of length 
L are taken throughout the MIDI bootleg score with a 
hop size of 2

L , and (b) probabilistic shingling, in which we 
randomly sample K windows of length L, where K and L 
are hyperparameters.

Figure 6 compares the effect of shingling strategy and 
hyperparameter settings for the dynamic N-gram system. 
Here, we use the 160 test MIDI files from the Sheet MIDI 
Retrieval dataset as queries, and use all solo piano sheet 
music images in IMSLP for the database.

There are 4 things to notice about Figure 6. First, longer 
fragment lengths (i.e. higher L) and more fragments (i.e. 
higher K) yield better results, as we might expect. Second, 
the benefit of a longer fragment length seems to saturate 
once the fragment length is in the range 500–1000. 
Third, the benefit of having more fragments becomes 
less and less as the fragment length increases. Indeed, 

Table 3: Comparison of system performance on MIDI-
sheet image retrieval. Columns indicate the database 
size (DB), precision (P) and recall (R) and F-measure (F) 
for passage-level retrieval, mean reciprocal rank (MRR) 
for file-level retrieval, and average runtime.

System DB P R F MRR Tavg

Random 1 .16 .16 .16 – 0.0s

SharpEye 1 .43 .08 .13 – –

PhotoScore 1 .64 .62 .63 – –

RetinaNet 1 .52 .26 .35 – 11.7s

Dorfer 2018c 1 .69 .28 .40 – 17.5s

Faster R-CNN 1 .84 .87 .85 – 49.9s

DWD 1 .91 .87 .89 – 213s

BS-DTW 1 .89 .89 .89 – 0.90s

BS-DTW 200 .90 .87 .88 .92 10.9s

1-gram 200 .58 .59 .59 .69 1.28s

2-gram 200 .70 .73 .71 .84 1.00s

3-gram 200 .60 .72 .66 .79 1.00s

4-gram 200 .41 .57 .48 .63 1.00s

5-gram 200 .36 .49 .42 .53 1.00s

dynamic 200 .74 .77 .75 .86 0.98s

BS-DTW 2k .89 .83 .86 .88 167s

1-gram 2k .48 .51 .49 .59 2.28s

2-gram 2k .63 .69 .66 .78 1.10s

3-gram 2k .49 .63 .55 .69 1.09s

4-gram 2k .39 .55 .46 .60 1.04s

5-gram 2k .35 .47 .40 .51 1.05s

dynamic 2k .66 .72 .69 .80 .98s

BS-DTW 10k .83 .77 .80 .83 458s

1-gram 10k .28 .34 .31 .43 6.78s

2-gram 10k .43 .58 .49 .68 1.45s

3-gram 10k .40 .53 .46 .56 1.10s

4-gram 10k .34 .48 .40 .50 1.04s

5-gram 10k .28 .42 .34 .46 1.00s

dynamic 10k .55 .66 .60 .73 .99s
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for longer lengths of 500 or 1000, the effect of having 
more fragments is marginal. Fourth, the deterministic and 
probabilistic shingling strategies perform approximately 
the same for longer fragment lengths.

Based on the above observations, we select the 
probabilistic shingling with K = 8 fragments and 
L = 500 fragment length as the optimal strategy. This 
setting achieved the highest retrieval accuracy of all 
configurations and had much lower runtimes (average 
6.4 seconds) than the deterministic shingling approach 
(average 12.9 seconds).

4.3 Linking LMD and IMSLP
As a practical application of our system, we find 
correspondences between LMD (Raffel, 2016) and IMSLP. 
This is a large-scale MIDI-sheet image retrieval problem in 
which there are no ground truth annotations. Our goal 
here is not to characterize retrieval accuracy, but rather 
to identify true matches for the purpose of constructing a 
rich, multimodal dataset that contains real (non-synthetic) 
sheet music images and corresponding MIDI data. Below, 
we describe the data preprocessing, methodology, and 
summary of the true matches found.

The data consists of all solo piano files in LMD and 
IMSLP. The IMSLP piano database is the same as in Section 
3.1 and contains 29,310 sheet music PDFs. The Lakh MIDI 
dataset is filtered by removing any MIDI file that contains 
a note event from a non-piano instrument. This reduces 
the LMD data from 176,581 to 27,077 files.

Our methodology for identifying LMD-IMSLP matches 
consists of four steps. First, we use every LMD piano MIDI 
file as a query to search the IMSLP database. For each 
MIDI file, we store a ranked list of all IMSLP PDFs based 
on their match score. Second, we use every IMSLP piano 
sheet music PDF as a query to search the LMD database. 
For each sheet music PDF, we store a ranked list of all LMD 
piano MIDI files based on their match score. Third, we 
determine a list of (MIDI file, IMSLP PDF) pairs that are 
in the top M results in both directions of the search. This 
provides strong circumstantial evidence that the MIDI 

and PDF may be a true match. We experimented with 
different values of M and found that the number of (MIDI, 
PDF) pairs satisfying the bidirectional top M condition 
approximately saturates for values of M between 10 and 
12. We used M = 11, which results in 8,521 (MIDI, PDF) 
pairs. Fourth, we manually verify the (MIDI, PDF) pairs to 
determine a set of true matches. In order to reduce the 
amount of manual work, we merge multiple PDFs from 
the same piece and select one representative PDF to verify. 
After collapsing in this way, there are a total of 4,178 pairs 
to verify manually.

Our end result is a text file containing a list of verified, 
matching (LMD MIDI file, IMSLP PDF) pairs. Each line of 
the text file contains an LMD filename and a unique ID 
number that specifies an IMSLP PDF file. For convenience, 
we also include the composer and piece name on each line. 
Note that there are often multiple PDFs for a piece (i.e. 
multiple sheet music versions), some of which may match 
the MIDI file and some of which may not. This occurs 
because of the structure of IMSLP data: a “piece” in IMSLP 
may actually be a collection of pieces (e.g. Chopin Etudes 
Op. 25), and the PDFs may contain the entire collection 
or individual elements in the collection (e.g. only Etude 
Op. 25 No. 1). We only list one PDF per IMSLP piece, and 
the listed PDF is guaranteed to contain the notes played 
in the MIDI file.

Table 4 summarizes the verified LMD-IMSLP matches 
that were found. Since we only verified one representative 
PDF per piece, this table should be interpreted as a 
summary of (LMD MIDI file, IMSLP piece) matches. The 
matches are grouped by composer and sorted by composer 
frequency. The second column indicates the number 
of LMD MIDI files for which a true match was found in 
IMSLP, and the third column indicates the number of 
unique IMSLP pieces for which a true match was found in 
LMD. In total, there were 1,433 matching (MIDI, PDF) pairs 
spanning 43 different composers and 349 different IMSLP 
pieces. The composers with the most matching MIDI files 
are not surprising: Bach, Chopin, Beethoven, Mozart, Liszt, 
Debussy, and Brahms. We release our list of LMD-IMSLP 
matches along with all code in an open-source repository.

Table 4: Summary of verified matches between the Lakh 
MIDI dataset and IMSLP.

Composer # Lakh MIDI # IMSLP Pieces

Bach 356 94

Chopin 291 49

Beethoven 186 50

Mozart 116 30

Liszt 77 32

Debussy 48 9

Brahms 41 10

Other 318 75

Total 1433 349

Figure 6: Comparing different strategies for handling 
repeats and jumps in MIDI-sheet image retrieval. The 
MIDI query is broken up into fragments of length L, 
either through deterministic shingling or a fixed num-
ber (K) of randomly sampled windows.
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5 Conclusion
We present a method for large-scale retrieval of piano sheet 
music images. Our method combines bootleg score features 
with a novel dynamic N-gram fingerprinting method that 
ensures that every fingerprint is discriminative enough to 
warrant a table lookup. We study the performance of our 
proposed method on two different tasks: camera-based 
sheet music identification and large-scale MIDI-sheet 
image retrieval. Using all piano sheet music images in the 
IMSLP database, the dynamic N-gram method achieves 
high retrieval accuracy (>0.8 mean reciprocal rank) and 
sub-second runtimes. As a practical application, we use our 
proposed method to find matches between the Lakh MIDI 
dataset and the IMSLP database. For future work, we plan 
to expand this approach to include non-piano sheet music.

6 Reproducibility
The data and code for reproducing our results can be 
found at https://github.com/HMC-MIR/SheetMusicID.

Note
	 1	 This article is a journal extension of an earlier conference 

paper (Yang and Tsai, 2020) that only examines the 
sheet-sheet retrieval task. This article provides more 
in-depth analysis of the sheet identification problem 
(Section 3), and then extends the same approach to 
the MIDI-sheet image retrieval task (Section 4).
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