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ABSTRACT
This paper studies instrument classification of solo sheet music.
Whereas previous work has focused on instrument recognition in
audio data, we instead approach the instrument classification prob-
lem using raw sheet music images. Our approach first converts
the sheet music image into a sequence of musical words based on
the bootleg score representation, and then treats the problem as a
text classification task. We show that it is possible to significantly
improve classifier performance by training a language model on
unlabeled data, initializing a classifier with the pretrained language
model weights, and then finetuning the classifier on labeled data.
In this work, we train AWD-LSTM, GPT-2, and RoBERTa models
on solo sheet music images from IMSLP for eight different in-
struments. We find that GPT-2 and RoBERTa slightly outperform
AWD-LSTM, and that pretraining increases classification accuracy
for RoBERTa from 34.5% to 42.9%. Furthermore, we propose two
data augmentation methods that increase classification accuracy for
RoBERTa by an additional 15%.

Index Terms— instrument, classification, identification, recog-
nition, sheet music

1. INTRODUCTION

It is relatively easy for a human to identify an instrument based on
its sound, since most have a very distinctive timbre. This paper asks
a more challenging question: Can you distinguish between different
instruments based on their sheet music? Such a system could be use-
ful for semantic segmentation of a sheet music document (e.g. PDF
from IMSLP) that contains parts from multiple instruments either on
a single page (e.g. orchestral score) or on different pages (e.g. violin
solo part followed by the piano accompaniment part). We study this
problem for 8 primarily monophonic instruments: violin, flute, clar-
inet, oboe, trumpet, cello, viola, and guitar. This is the instrument
classification task based on raw sheet music images.

Many previous works have studied instrument identification in
audio recordings. Much of the recent work has been spurred on by
OpenMIC-2018 [1], an open dataset for multiple instrument recog-
nition. Nearly all recent approaches use convolutional or recurrent
neural networks of various forms to process the audio spectrogram
[2][3], often combined with other preprocessing steps like source
separation [4]. Many recent works also utilize transfer learning, us-
ing pretrained CNN models as a feature extractor to train the instru-
ment classification model[1][5][6]. A very recent work demonstrates
the effectiveness of a ResNet architecture on the task [7].

We approach the problem of instrument classification from a
different angle, focusing on sheet music images rather than acous-
tic sound. Clearly, each instrument has certain characteristics in
its music that go beyond acoustic timbre: the instrument’s range,
monophony vs polyphony, characteristic motions (e.g. large jumps
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are easier to play on a violin than a trumpet), etc. This paper ex-
plores the extent to which we can differentiate between 8 different
instruments based on note characteristics in their sheet music.

Our approach to the problem is to convert sheet music into words
and then to approach the problem as a text classification task. A
similar approach was recently proposed to classify piano music by
composer [8]. In this previous work, much of the information is
contained in the vertical component since piano is a highly poly-
phonic instrument. In this work we explore a similar approach to
the instrument classification task, but we focus on primarily mono-
phonic instruments where relatively little information is contained in
the vertical component.

Our work takes inspiration from recent developments in the NLP
community. In 2018, Howard and Ruder [9] achieved state-of-the-
art results on several NLP tasks by training an LSTM-based lan-
guage model on a large set of unlabeled data, replacing the last out-
put layer, and finetuning on a small set of labeled data. While the
idea of pretraining a model using language modeling was not new
(e.g. [10]), the impressive results achieved by this study brought
language model pretraining into the mainstream. Many other ap-
proaches like BERT [11] and GPT-2 [12] adopted a similar pretrain-
ing stage with transformer-based models, and all of their extensions
(e.g. [13][14][15][16]) similarly use pretraining on unlabeled data.

We incorporate such pretraining methods into our approach. We
start by converting each sheet music image into a sequence of words
based on the bootleg score representation [17]. We then feed this
sequence of words into a classifier. We show that the performance of
the classifier can be improved significantly by pretraining a language
model, initializing the classifier with the pretrained language model
weights, and then fine-tuning the classifier on labeled data. We train
AWD-LSTM [18], RoBERTa [19], and GPT-2 [12] language mod-
els on solo instrumental sheet music obtained from the International
Music Score Library Project (IMSLP) website. Through pretrain-
ing, we are able to improve the accuracy of a RoBERTa model from
34.5% to 42.9% on our instrument classification task.

This paper has three main contributions. First, we define the task
of instrument classification based on sheet music images, and release
a benchmark based on IMSLP data for evaluating performance on
an 8-way classification task. Second, we demonstrate the benefits of
language model pretraining with several model architectures com-
bined with a recently proposed feature representation of sheet music
called a bootleg score. Finally, we introduce a simple scheme of
training and test time augmentation on the bootleg score feature rep-
resentation that significantly improves classification performance.1

2. SYSTEM DESCRIPTION

There are three main components in our proposed method: language
model pretraining, classifier finetuning, and inference. These three

1Code can be found at https://github.com/HMC-MIR/
InstrumentID.
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Fig. 1. A section of Paganini’s Caprice 24 for violin and its corre-
sponding bootleg score. The staff lines are shown for reference but
are not present in the actual representation.

main components will be explained in depth in the next three sub-
sections.

2.1. Language Model Pretraining

The first main component is language model pretraining, which con-
sists of three steps.

The first step is to convert each sheet music image into a boot-
leg score. The bootleg score is a low-dimensional representation of
sheet music that encodes the positions of filled noteheads relative to
the staff lines [17]. While the original formulation of the bootleg
score was designed specifically for piano sheet music, we can eas-
ily adapt the representation to single-staff sheet music by removing
the grouping of staves and adjusting the range of possible staff line
positions to the eight instruments of interest. Our modified bootleg
score for single-staff sheet music is a 31 × N binary matrix, where
31 is the number of possible staff line positions and N is the number
of note events in the sheet music. Figure 1 shows an excerpt of sheet
music and its corresponding bootleg score representation.

The second step is to tokenize the bootleg score into a sequence
of words or subwords. We use different tokenization methods for
different types of language models. For word-based language mod-
els like AWD-LSTM [18], we interpret each column of the bootleg
score as a single word. We keep any words that occur more than
3 times in the dataset, and map infrequent words to a special un-
known word token <unk>, resulting in a vocabulary size of 4616.
For subword-based language models like RoBERTa [19] and GPT-2
[12], the tokenization consists of two sub-steps. The first sub-step is
to convert each column of the bootleg score (containing 31 bits of in-
formation) into a sequence of 4 bytes. The second sub-step is to treat
each byte as a character and learn a vocabulary of subwords in an un-
supervised manner using a byte pair encoding (BPE) algorithm [20].
For the two subword-based language models in this work, we use
the same BPE tokenizer with a maximum vocabulary size of 30,000.
After this step, our sheet music images have been converted into a
sequence of words or subwords.

The third step is to train a language model on a set of unlabeled
data. We use three different models: AWD-LSTM [18], RoBERTa
[19], and GPT-2 [12]. The AWD-LSTM is a three-layer LSTM
with multiple types of dropout and regularization. The AWD-LSTM
model predicts the next word in a sequence, so it can be trained in a
self-supervised manner. The second model is GPT-2, which consists
of six transformer decoder layers [21] and is trained to predict the
next token at each time step. The third model is RoBERTa, which is
an optimized version of Google’s BERT [11]. The RoBERTa model
consists of six transformer encoder layers and is trained to predict
the identity of randomly masked input tokens.

2.2. Classifier Finetuning

The second main component is classifier finetuning, which consists
of three steps.

The first step is to convert the sheet music images in the labeled
dataset into sequences of words or subwords. We follow the same
process for extracting bootleg scores and use the same tokenizer that
was used during language model pretraining.

The second step is to sample fixed-length fragments of words
or subwords from the labeled data. This allows us to significantly
augment the amount of training data, and it also allows us to sample
the data to ensure balanced classes. By preparing the data in this
manner, our classifiers are trained to classify fixed-length fragments
rather than full pages of sheet music. We will refer to the fragment
classification problem as the proxy classification task.

The third step is to finetune a classifier on the labeled fragment
data. Our general approach is to add a classifier head on top of
the pretrained language model, initialize the weights of the classi-
fier with the pretrained language model weights, and then finetune
the classifier on the labeled fragments in the proxy dataset. For the
AWD-LSTM model, the classifier head consists of two linear layers
at the output of the last LSTM layer. For the GPT-2 and RoBERTa
models, we add the symbols <s> and </s> at the beginning and
end of every input, and we feed the output from the last transformer
layer at the first (RoBERTa) and last (GPT-2) time step into a single
linear classification layer.

We finetuned all models using the techniques proposed in [9],
which were shown to be effective in pretraining and finetuning text-
based classifiers. This includes using a learning rate rangefinder,
gradual unfreezing of layers, discriminative finetuning, and (mul-
tiple cycles of) one cycle training [22]. These methods were also
found to be effective in [8] for a composer classification task.

2.3. Inference

The third main component is to use the proxy classifier to make pre-
dictions on pages of unseen sheet music. We explore two different
inference methods. The first method is to convert the page into a
sequence of words or subwords, and then apply the proxy classifier
to a single variable-length sequence of tokens. The second method
converts the variable-length sequence of words/subwords into a se-
quence of fixed-length fragments with 50% overlap. Each fragment
is then processed by the proxy classifier, and the predictions are av-
eraged across all fragments in the page.

3. EXPERIMENTAL SETUP

We will explain the experimental setup in three parts: data collection,
data annotation, and data preparation for the proxy task.

The data consists of raw sheet music images from IMSLP. The
IMSLP metadata specifies the instrumentation of each piece through
category tags. Examples of these category tags include “for vio-
lin” and “for clarinet, piano.” We selected eight primarily mono-
phonic instruments with a significant amount of data (shown in Ta-
ble 1). To find solo sheet music for these instruments, we filtered
all IMSLP pieces based on three criteria: (1) it contained the “for
<instrument>” category tag for one of the eight instruments, (2) it
was in the Public Domain or had a Creative Commons license, and
(3) it was not a manuscript. To ensure that we had enough data for
each instrument, we further augmented the trumpet data with the
“for trumpet, piano” and “for trumpet, orchestra” tags, and we aug-
mented the oboe data with the “for oboe, orchestra” tag. We refer



Dataset Cello Clarinet Flute Guitar Oboe Trumpet Viola Violin
Unlabeled - Pieces 227 77 192 1513 82 85 84 520
Unlabeled - Pages 2264 1384 2038 7213 963 753 1408 5486
Labeled - Pieces 75 75 73 75 65 51 72 70
Labeled - Valid Pages 921 758 1300 569 622 396 1323 1815

Table 1. Piece and page counts for each instrument in the labeled and unlabeled datasets.

Fig. 2. Results on the proxy classification task. This shows the
effect of different pretraining conditions and fragment sizes.

to the resulting set of filtered data as the unlabeled dataset, since the
PDFs may contain accompaniment parts or filler pages. Since there
can be multiple PDFs for a given piece, we selected the PDF with
the most downloads.

Next, we constructed a labeled dataset by manually annotating
a subset of the unlabeled data. We first randomly sampled 75 PDFs
from each instrument in the unlabeled dataset. We then manually
verified each PDF, keeping the pages that contain only solo instru-
mental sheet music and discarding any filler pages or pages contain-
ing accompaniment parts. Some corrupted or mislabeled PDFs were
also discarded. In total, the labeled dataset contains 7627 valid pages
of solo instrumental sheet music. For the classification task, we split
the labeled data by piece, using 60% for training, 20% for valida-
tion, and 20% for testing. For language model training, we split the
data by piece, using 90% for training and 10% for validation.

To construct data for the proxy task, we sampled 3600, 1200,
and 1200 fragments from each instrument for train, validation, and
test, respectively. We construct separate datasets for fragments of
size 64, 128, and 256.

4. RESULTS

We compare the performance of four different model architectures:
CNN, AWD-LSTM, GPT-2, and RoBERTa. Our CNN model is
based on the model proposed in [23], where local features are
computed on a piano roll-like representation, the local features are
pooled across time, and the resulting feature statistics are passed
to a linear classifier. Our model is not exactly the same as in [23],
however, since this previous work assumes that full symbolic music
information is available.

Fig. 3. Model performance on fullpage classification task.

Figure 2 compares the performance of all models on the proxy
classification task. We consider the performance for three different
fragment sizes and three different pretraining conditions: no pre-
training, labeled pretraining, and unlabeled pretraining. With no
pretraining, we train the classifier from scratch on the proxy data.
With labeled pretraining, we first train a language model on the la-
beled dataset, and then finetune the classifier on the proxy data. With
unlabeled pretraining, we train a language model on the unlabeled
dataset, finetune the language model on the labeled data, and then
finetune the classifier on the proxy data.

There are 3 things to notice about Figure 2. First, language
model pretraining helps a lot. For all models and fragment sizes, we
see a big increase in classification accuracy for the pretrained mod-
els (blue and red bars) compared to the models trained from scratch
(green bars). For example, the accuracy of the GPT-2 model with
fragments of size 64 increases from 32.1% to 42.3% and 43.2% for
the three pretraining conditions. Second, there is only a small in-
crease in classification accuracy going from labeled pretraining to
unlabeled pretraining. There are about 3 million bootleg score fea-
tures in the labeled dataset and 5.6 million features in the unlabeled
dataset. Since this is only a modest increase in the amount of data
and the unlabeled data is also noisy and imbalanced, the model does
not benefit much from pretraining on the unlabeled data. Finally, we
see that the accuracy increases as the fragment size increases. This
is to be expected, since the model has more context to work with.

Figure 3 shows the performance on the full page classification
task. Note that the evaluation metric is macro F1 instead of accu-
racy, since the data in the full page classification task is imbalanced.
We found averaging predictions on multiple fixed length sequences
yielded superior results with all models except the CNN. We only
show the best-performing inference type for each model.



Fig. 4. Example outputs for the RoBERTa model.

There are two things to notice about Figure 3. First, we see that
pretraining helps in all cases. For all models and fragment sizes, the
pretrained models (blue and red bars) perform much better than the
models trained from scratch (green bars). Second, for both trans-
former models the performance degrades as fragment size increases.
For example, as the fragment size goes from 64 to 128 to 256, the
macro F1 of the RoBERTa model decreases from 0.612 to 0.579 to
0.551. We believe this is due to a bias in the proxy dataset: the
proxy classifier is only trained on long fragments of size 256, but
many pages of sheet music contain less than 256 words, resulting in
data that the proxy classifier has not seen in training. In contrast,
the AWD-LSTM model seems to benefit from training on longer se-
quences, but is able to handle shorter sequences well even when short
sequences are not seen in training.

5. ANALYSIS

In this section, we perform three additional analyses on our best-
performing model: RoBERTa with fragment size 64.

The first analysis is to examine individual examples to better
understand the model’s behavior. Figure 4 shows three bootleg
score fragments (top - guitar, middle - guitar, bottom - flute) and
the RoBERTa model predictions. In the top example, the model
confidently and correctly classifies the fragment as guitar, whereas
it incorrectly classifies the middle example as cello. In general,
we found monophonic inputs to be much more error-prone than
polyphonic inputs, since polyphony provides much more distinctive
information about the instrument. In the bottom example, the model
confidently classifies the fragment as flute, recognizing that flute
music frequently has high notes above the staff.

The second analysis is to examine common confusion pairs.
The most common (actual-predicted) confusion pairs are viola-flute
(260), trumpet-oboe (259), and oboe-clarinet (230). We noticed that
the confusion pairs are often asymmetrical. For example, there are
far more oboe-clarinet confusions (230) than clarinet-oboe confu-
sions (117). We believe this asymmetry is due to the instrument
ranges: because clarinet has a wider range than oboe, notes outside
of the oboe’s range provide information to avoid clarinet-oboe mis-
takes but not oboe-clarinet mistakes. The instrument with the least
mistakes is guitar, since it has the most polyphony.

The third analysis is to explore the effect of data augmentation.
We experimented with both training and test-time augmentation. In
training data augmentation, the bootleg scores are shifted up and
down by up to K staff line positions to generate additional data sam-
ples (e.g. K = 3 results in seven times more data). Shifts correspond

Fig. 5. Effect of data augmentation on the RoBERTa model. Higher
values of K correspond to more training data augmentation, and
higher values of L correspond to more test-time augmentation.

to a key transposition in the music. In test time augmentation, inputs
are shifted up and down by up to L positions, and predictions are
averaged across all shifted versions of the input.

Figure 5 shows the effect of data augmentation on the RoBERTa
model. We see that more training augmentation always helps up to
K = 3. For example, the accuracy of the proxy classifier (with L =
0) increases from 42.9% to to 56.5% as K increases from 0 to 3, and
the macro F1 score of the full page classifier increases from 0.611 to
0.679. On the other hand, test-time augmentation only helps when
used in moderation. For example, the accuracy of the proxy classifier
with K = 3 improves from 56.5% to 58.8% as L increases from 0
to 2. Beyond L = 2, however, we see a significant degradation
in performance. One possible explanation for this behavior is that
large values of L cause a loss of information about the range of the
instrument. Using the best configuration of K = 3, L = 2, the
accuracy improves from 42.9% to 58.8% on the proxy task and from
.611 to .691 macro F1 on the full page task.

6. CONCLUSION

We propose a method for predicting the instrument of a single page
of solo instrumental sheet music. This method first converts the sheet
music into a sequence of words and then feeds the words into a text
classifier. We demonstrate that language model pretraining substan-
tially improves the performance of the classifier. We also introduce
two types of data augmentation that further improves classification
performance. For future work, we would like to incorporate clef de-
tection into the system and expand our method to work with sheet
music containing multiple instruments.
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